State of California The Resources Agency Department of Water Resources Northern District

Smith River Plain Ground Water Study

December 1987

Gordon K. Van Vleck Secretary for Resources The Resources Agency George Deukmejian Governor State of California

David N. Kennedy Director Department of Water Resources

FOREWORD

It has been 21 years since the Department of Water Resources published the comprehensive ground water quality investigation, Bulletin 74-3, "Water Well Standards, Del Norte County". During the interim period, a number of wells have been sampled and measured in Del Norte County to monitor major ground water basin changes. In 1985, that monitoring grid consisted of seven wells measured twice a year for water levels and five wells sampled once a year for water quality.

This study was undertaken to expand our knowledge of the geologic and hydrologic conditions that exist in the Smith River Plain Basin, determine the availability of ground water and its quality, and re-evaluate the monitoring wells to ensure that the wells are the most representative of basin conditions.

The report concludes that, except for localized impairment, ground water in the Smith River Plain Ground Water Basin is of excellent quality and is suitable for most beneficial uses. Ground water is unconfined throughout the basin and therefore relatively unprotected from surface contamination. Discharge of wastes and use of toxic materials need to be carefully controlled to prevent pollution. It also concludes that updated and expanded water quality and water level monitoring grids should be implemented. The report recommends that existing well sealing standards be enforced, especially in areas where toxic materials are used.

Wayne S. Gentry, Chief

Northern District

CONTENTS

ragi	=
FOREWORD	i
CONVERSION FACTORS	V
ORGANIZATION	٧
INTRODUCTION	1
Area of Investigation	1
	1
	3
Previous Studies	3
REGIONAL GEOLOGY	7
HYDROGEOLOGY	1
Principles of Ground Water Hydrology	1
Ground Water Occurrence	3
Ground Water Movement	3
Non-Water-Bearing Formations	5
Bedrock Series	5
St. George Formation	5
Water-Bearing Formations	6
Battery Formation	6
River Terrace Deposits	8
Alluvial Fan Deposits	9
Dune Sand	0
Floodplain Deposits	0
Ground Water Hydrology	_
Direction of Movement	_
Ground Water Fluctuations	
Ground Water Use	
WATER QUALITY	
Water Quality Criteria	
Domestic and Municipal Water Supply	
Agriculture Water Supply	
Water Quality Characteristics	
Alkalinity and pH	
Chlorides	
Sulfates	
Hardness	
Coding induction function of the contract of t	8
	8
	8
Suitability for Beneficial Use	9
SUMMARY OF FINDINGS	1
CONCLUSIONS	3
RECOMMENDATIONS	. 5
REFERENCES	7

	FIGURES	Page
_		_
1.	Location of Smith River Plain Ground Water Basin	2
2.	Location of Monitored Wells	5
3.	Smith River Plain Geomorphic Groups	8
4.	Occurrences of Ground Water	12
5.	Cone of Depression Caused by Pumping Wells	14
6.	Effects of Interference Between Two Pumping Wells	14
7.	Elevation of Water in Wells, Spring 1987	22
8.	Generalized Geologic Cross Section of the Smith River Plain	24
9.	Smith River Plain Hydrographs, 1967-1987	26
10.	Smith River Plain Hydrographs, 1986-1987	27
	TABLES	
1.	Estimated Annual Water Use	28
2.	Maximum Contaminant Levels - Inorganic Chemicals	32
3.	Maximum Contaminant Levels - Organic Chemicals	32
4.	Limiting Concentrations for Fluoride	33
5.	Consumer Acceptance Limits - Secondary Drinking Water Standards	33
6.	Mineralization - Secondary Drinking Water Standards	33
7.	Agricultural Water Supply Criteria	35
	PHOTOS	
7		17
1.	St. George Formation showing seepage at upper contact	17
2.	Joint sets in St. George Formation	17
3.	Battery Formation overlying St. George Formation	18
4.	Typical rock size and sorting in Fort Dick river terrace	19
	ADDRNOTCEC	
	APPENDICES	
A.	Well Numbering System	49
В.	Well Qualification and Water Character	53
C.	Ground Water Level Measurements	57
D.	Mineral Analysis of Ground Water	67
E.	Minor Element Analysis	119
F.	Water Quality Guidelines for Agriculture	129

State of California GEORGE DEUKMEJIAN, Governor

The Resources Agency GORDON K. VAN VLECK, Secretary for Resources

Department of Water Resources DAVID N. KENNEDY, Director

JOHN P. CAFFREY Deputy Director

ROBERT G. POTTER
Deputy Director

ROBERT E. WHITING Deputy Director

SALLE S. JANTZ Assistant Director SUSAN N. WEBER Chief Counsel

NORTHERN DISTRICT Red Bluff

The Regional Water Quality Control Board staff helped run seismic lines and measured water levels throughout the study period. The County Department of Public Works began monthly water level monitoring in May 1987 and will continue for at least the coming year.

Diane M. McGill Executive Secretary I

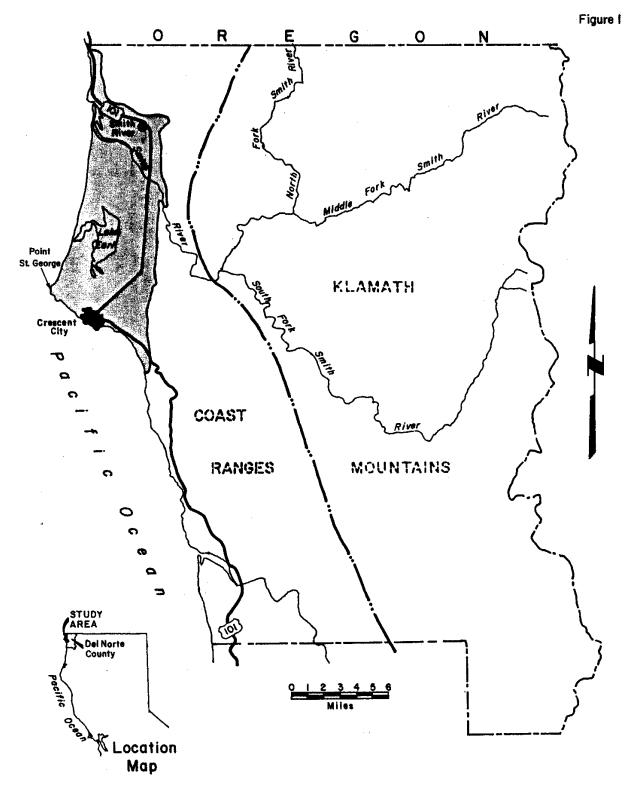
INTRODUCTION

This ground water update was undertaken to expand our knowledge of the geologic and hydrologic conditions that exist in the Smith River Plain basin and to determine the availability of ground water and its quality. This report presents data and interpretations that will provide a better basis for decisions related to the protection, development, and use of the valuable water resources of this basin.

Area of Investigation

The Smith River Plain Ground Water Basin is in Del Norte County in the extreme northwest corner of California (Figure 1). The plain is bordered by the Pacific Ocean on the west and the foothills of the California Coast Ranges on the east. The plain has an area of about 110 square miles, with a north-south length of about 20 miles and a maximum width of about 6 miles. This area is subrectangular in shape, pinching out to the south against the steep scarp of the mountainous headland. The north end of the plain narrows abruptly at the mouth of Smith River to a marine terrace less than one mile wide that continues north into Oregon. The Smith River crosses the northern portion of the plain near the town of Smith River.

Lake Earl, a shallow, brackish body of water, occupies nearly 2,100 acres near the central portion of the Smith River Plain. This lake is intermittently connected to the Pacific Ocean via a narrow neck of water and Lake Talawa. It is subject to periodic flooding from surface water runoff and during drier months is sustained by ground water discharge.


Crescent City, the largest city in the county, has a population of 2,960 with a suburban population of about 6,800. Within the plain, about 5,700 acres are presently irrigated for lily bulbs and pasture.

Purpose and Scope

Many rural communities are experiencing inadequate water supply and water quality and sewage-disposal problems. Also, they lack basic data on their area's water resources and often have neither the finances nor the staff to develop these data on a regional scale. To help these rural areas, the State has been providing the Department of Water Resources with funding to conduct this type investigation.

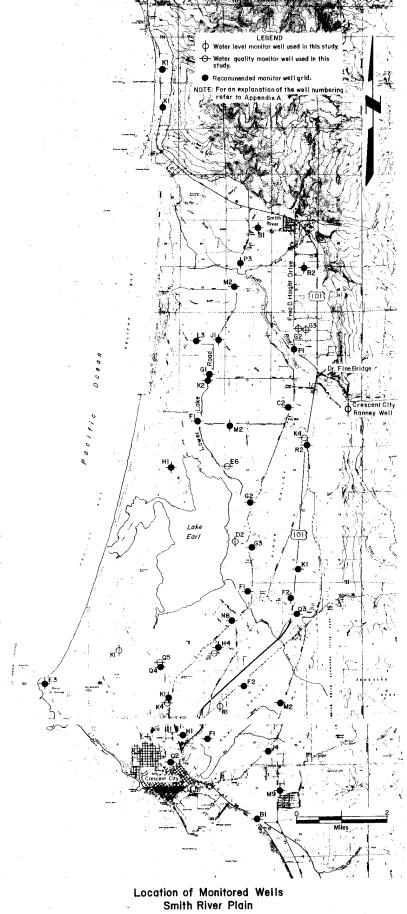
Some water wells in the Smith River Plain's ground water basin contain unacceptably high levels of two nematocides (aldicarb and 1,2-dichloropropane), which were used in lily production until suspended in 1983 by the County Agricultural Commissioner. In other areas of the basin, high nitrate levels have been found in domestic wells, and waste disposal sites exist that may represent threats to the local ground water resource.

This study, besides updating knowledge of the geology and hydrology of the entire basin, will enable DWR to re-evaluate its basic data monitoring

Location of Smith River Plain Ground Water Basin

program. New water level and water quality wells may be added to ensure that the monitoring is representative of basin conditions. Del Norte County needed a basic data report that would enable them to make sound planning decisions on their future water development and waste discharge. In turn, they provided staff assistance in gathering water-level and land-survey data. Concurrent with our study, the California Regional Water Quality Control Board, North Coast Region, (RWQCB) has been sampling wells and studying the soils near Smith River to determine the extent and character of nematocide contamination. They requested a geohydrology report in that portion of the basin. That report will be completed in December 1987 under a \$35,000 study partially funded by EPA 205j funds, administered by RWQCB, Santa Rosa.

Methods


Work on this investigation began in July 1985 with a literature survey at the State Resources library and the Humboldt State University and Del Norte County libraries. Monitoring at that time consisted of seven water-level wells measured twice a year and five water-quality wells sampled once a year. Most of the wells were drilled in the 1950s or earlier and did not have Well Drillers Reports. Recent, complete Well Drillers Reports were selected from our files, field located, and documented with official State numbers (Appendices A and B). These located wells were used to monitor water levels and water quality throughout the basin. Where drillers information was lacking, nine seismic refraction lines were run to determine the depth to bedrock.

In addition to the periodic water-level measurements, four continuous water-level recorders were installed to track water-level changes. These recorders have recently been moved to Lake Earl for an ongoing study in that area. In the spring of 1987, water-level contours were drawn using 105 measured wells from throughout the basin and a measurement grid was selected (see Figure 2). Standard mineral analyses were run on 29 well water samples during the summer of 1986. Temperature, pH, and electrical conductivity (EC) were run in the field at the time of collection. The samples were analyzed at the Department's chemical laboratory at Bryte. These data, coupled with RWQCB water-quality analyses made near Smith River, provide a good overview of the ground water quality in the basin and were used to redesign our water-quality monitoring grid (Figure 2). All the new wells have been qualified according to their producing strata and/or formation (see Appendix B).

Previous Studies

In 1953, the U. S. Geological Survey (USGS) and California Division of Water Resources made a reconnaissance study of the ground water conditions of the Smith River Plain. The results of that investigation were published in USGS Water Supply Paper 1254. In 1966, at the request of Del Norte County, the Department of Water Resources investigated water quality conditions in the ground water throughout the County. This study was published as Bulletin 74-3, "Water Well Standards, Del Norte County". These two studies are the main background reports on the regional occurrence of ground water in the Smith River Plain. The hydrogeologic reference material compiled during this study that

provided new information came mainly from site investigations connected with the Del Norte County Prison studies (J. H. Kleinfelder and Associates) and a hazardous waste site study near the county airport (Woodward-Clyde Consultants). Both consulting firms provided written material, subsurface information, and helpful discussions on the area's geology and hydrology.

This Page Blank

REGIONAL GEOLOGY

The Smith River Plain ground water basin is in the extreme northwest corner of the State (Figure 1). It is bordered on the west by the Pacific Ocean and on the east by the California Coast Ranges.

The Smith River Plain is a large terrace consisting of the Battery and St. George Formations overlying Franciscan Complex bedrock. The terrace is partially covered by sand dunes and stream alluvium. It was formed by the emergence of a shallow submarine platform during late Pleistocene time. The western edge of the platform, from Point St. George north to the mouth of Smith River, consists of a broad sand beach. From Point St. George south to Crescent City, the platform is terminated by a 50-foot-high sea cliff above a narrow beach. A similar beach and low sea cliff extend along the coastal strip north of Smith River into Oregon. A broad sandy beach extends southeast from Crescent City to the base of the rugged headland at the southern tip of the plain.

The eastern side of the platform is bordered by a remarkably straight, north-south escarpment forming the western front of the California Coast Ranges. A recent fault study by J. H. Kleinfelder and Associates suggests this escarpment may be a wave-cut erosional feature. However, they stated there is not enough evidence to reject the previously mapped trace of the Del Norte fault. At the town of Smith River, the mountain front trends westward, forming the northern boundary of the plain, except for the narrow coastal strip that extends into Oregon.

The Smith River Plain can be divided into a bedrock series that includes all rocks of pre-Tertiary age and a sedimentary series of Tertiary to Quaternary age, which includes the principal water-bearing units. The bedrock series consists of dense crystalline rocks of the Franciscan Complex that contain no appreciable amount of ground water. This is overlain by the St. George Formation, which also contains very little ground water. Small amounts of ground water may be contained in and transmitted through joints and fractures within these two formations. The younger sedimentary deposits, in contrast, transmit water through interconnected pore spaces and may contain relatively large amounts of ground water. These sedimentary deposits can be further subdivided into five geomorphic groups, based on their mode of deposition. These groups are: (1) marine terraces, (2) river terraces, (3) floodplains, (4) sand dunes, and (5) alluvial fans. Figure 3 shows the relative positions of the various geomorphic groups as they appear on the Smith River Plain.

The marine terrace, composed of the Battery Formation, occupies most of the southern half of the plain. Since emergence of the platform, the surface of this terrace has been considerably altered by stream erosion and wind action. The most outstanding feature of this area is the series of northwesterly-trending roughly parallel, elongated sand ridges. They are about 500 feet wide at the base and rise 30 or 40 feet above the plain. The ridges are relict sand dunes that formed at the end of the Pleistocene before vegetation covered the newly emerged surface. Natural drainage is greatly impeded by these ridges. Only Elk and Jordan Creeks have succeeded in cutting channels through to the ocean and to Lake Earl, respectively. Marine terrace deposits,

Smith River Plain Geomorphic Groups

correlative with the Battery Formation, also occupy the narrow bench forming the northern extension of the plain north of the mouth of Smith River.

River terrace deposits were formed during the Pleistocene when the ancestral Smith River and Rowdy Creek dumped floodplain and stream-channel deposits onto the plain from Fort Dick to the town of Smith River. Subsequent elevation of the plain and renewed downcutting of streams left these deposits with irregular terrace edges. The largest terrace, the Fort Dick terrace, borders the southern margin of the Smith River floodplain. The boundary between this terrace and the floodplain is marked by an abrupt escarpment as high as 20 feet in places. Similar but smaller terraces occur north of Smith River and along Rowdy Creek.

The Smith River has the most extensive floodplain in the area. The floodplain is about half a mile wide east of Fort Dick and widens gradually toward the west for about 4 miles, where it merges with the floodplain of Rowdy Creek near the mouth of Smith River. The floodplain has a relatively flat and featureless southward extension to Lake Earl along Talawa Slough. Elsewhere, these deposits have irregular low swales containing standing water during part of the year.

Recent sand dunes form a narrow strip about one mile wide from Point St. George to the mouth of Smith River. These dunes, on the lee side of the beach, form elongated ridges as much as 60 feet high with the long axis oriented roughly northwest. Some of the dunes are active and are migrating to the south, while others have been stabilized by vegetation. The sand dunes are a barrier to surface runoff from the central part of the plain, resulting in the formation of lake Earl and Lake Talawa.

Alluvial fans form the smallest geomorphic unit within the Smith River Plain. The fans form a narrow, discontinuous apron of alluvial debris along the base of the escarpment bounding the plain's eastern edge. The fans are marked by a small change in slope at their base that gradually steepens toward the base of the mountain front. They tend to fan out from the mouths of the many small drainages or coalesce to form a larger fan.

This Page Blank

HYDROGEOLOGY

This section provides background material on the principles of hydrogeology and describes the aquifers and occurrence and movement of ground water in the Smith River Plain.

The occurrence, movement, and fluctuations of ground water are determined through analysis of water-level data from wells throughout a ground water basin. The best data can be obtained only from qualified wells (wells with logs and information on the placement of perforations in the casing), which are perforated in a single stratum. These data can show both seasonal and long-term changes in water levels. Historical records of water levels are helpful in detecting trends in ground water storage in a basin. Appendix C is a list of all water levels the Department has on file for the Smith River Plain.

Principles of Ground Water Hydrology

The movement of a drop of water from the time it enters the ground to the time it emerges, either naturally or by being pumped from a well, is controlled by underground conditions. Upon entering the ground, the water moves downward through the zone of aeration and into the zone of saturation, the upper surface of which is the water table. Figure 4 shows the occurrence of ground water within these zones. In the upper zone, or zone of aeration, most of the intergranular spaces in the geologic materials are filled partly with air and partly with water, and conditions may approach saturation due to infiltration of rainfall or irrigation water. Wells cannot produce ground water from the zone of aeration. "Perched" ground water can occur in an isolated saturated zone separated from the main body of ground water by a layer of rock or clay that water cannot pass through.

In the lower zone, or zone of saturation, the intergranular spaces in the underground materials are interconnected and filled with ground water. Ground water exists in this zone under unconfined conditions, except where there are widespread impervious layers that can trap water beneath them. There is no evidence that any of the major aquifers in the Smith River Plain are confined with ground water under pressure. They all can be recharged from direct precipitation, surface runoff, or the ocean. The water table is the upper surface of the water in the saturated zone and is approximately the level to which water will rise in a well.

Ground water resources are replenished when water from precipitation, streamflow, irrigation, and other sources sinks into the ground, and the area into which it sinks is called a "recharge area". Recharge areas normally include mountains, foothill slopes, and valley floors. Alluvial deposits on valley floors that are hydrologically connected to rivers and streams are often important recharge areas. These deposits are usually very permeable and allow rapid infiltration. In coastal areas, permeable sediments in contact with sea water may permit lateral movement of salt water into a ground water basin if the water table is lowered by ground water extraction.

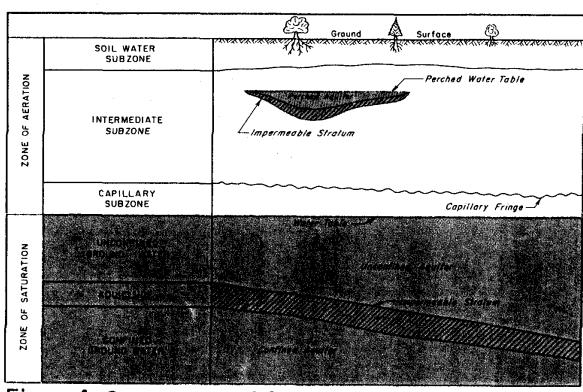


Figure 4 Occurrences of Ground Water.

Ground Water Occurrence

Most of the materials that make up the earth's outer crust have open spaces that may contain ground water. The openings range from minute pores in clays and small cracks in rocks to large passages found in some basalt flows and limestone areas. Porosity, or the percentage of empty space in a material, does not necessarily mean ground water can move through the material easily. If the openings are very small or are not connected, water movement is restricted and the material is said to have a low permeability, even though its porosity may be high. Thus materials of low permeability and high porosity, such as clay, transmit little water to wells. In contrast, materials of high permeability but somewhat lower porosity, such as mixtures of coarse gravel and sand, can yield large amounts of ground water.

Impacts of Pumping

When a well is pumped, the water level around it is drawn down to form an inverted cone with its apex at the well. This cone of depression in the static water surface is shown in Figure 5. The size of the cone depends on how much water is being pumped and how fast water can flow through the aquifer to replenish the well. As pumping continues, the cone expands in depth and area until it reaches equilibrium between pumping demand and aquifer yield.

Where the amount of water pumped from an aquifer is greater than aquifer yield, water levels will continue to decline. In areas where intensive development has taken place in ground water reservoirs, the cone of depression of some wells will overlap with those of neighboring wells, producing a regional area of depression and lowering water levels. Figure 6 illustrates the effects of this interference among pumping wells. The extent of interference depends on the rate of pumping from each well, the spacing between wells, and the hydraulic characteristics of the aquifer into which the wells are drilled.

Ground Water Movement

General ground water movement in a ground water basin can be interpreted from maps that show lines of equal elevation of the static water table. The maps indicate the direction of ground water movement, at right angles to the contour lines, and water moves from the higher elevation contour to the lower, or from areas of recharge to areas of discharge. Under typical water table conditions, the slope of the water table and, therefore, the direction of ground water movement are closely related to the slope of the land surface. Under natural conditions, the rate of ground water movement in an aquifer is usually slow, from a few feet to a few hundred feet per year. However, pumping can create a temporary depression in the water table and change the direction and rate at which ground water moves—toward the well instead of down the natural gradient.

Often, physical barriers that impede the movement of ground water are indicated by the patterns or spacings of the ground water contours. The effect of geologic faults on the movement of ground water can often be interpreted from contour maps. Where a fault offsets a water-bearing layer, ground water may be dammed, forming a higher water table on the recharge side, or may rise along the fault zone and appear at the ground surface as springs.

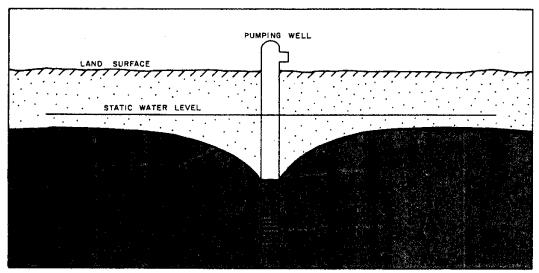


Figure 5 Cone of depression caused by pumping wells.

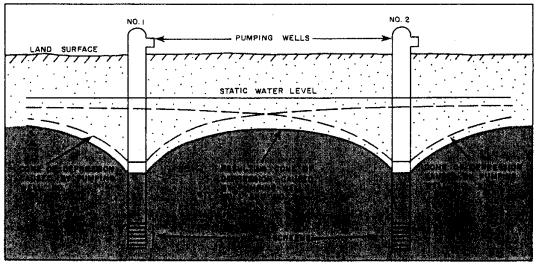


Figure 6 Effects of interference between two pumping wells.

Non-Water-Bearing Formations

Within the Smith River Plain ground water basin, there are two rock units, the bedrock series and the St. George Formation, where only minor amounts of ground water occur.

Bedrock Series

The Jurassic to Cretaceous age Franciscan Complex rocks form the "basement" of the Smith River Plain platform and the adjacent Northern Coast Ranges. They consist of marine sedimentary rocks including sandstone, shale, and minor amounts of chert, conglomerate, and greenstone. In general, the basement rocks are slightly metamorphosed, poorly bedded, and complexly deformed. These rocks weather rapidly and develop thick, clayey, residual soils on the upland slopes.

The bedrock series underlies the plain south of Lake Earl at depths of up to 300 feet beneath the surface (USGS, 1957). North of Lake Earl, bedrock usually occurs at depths of less than 100 feet. Scattered rock outcrops, which are interpreted as ancient sea stacks, protrude through the younger sediments.

The basement rocks are essentially impermeable; however, small amounts of water are transmitted and contained locally in joints and fractures. These openings give rise to many small springs along the front of the Coast Range. A 215-foot-deep well at Redwood Union School drilled into bedrock reportedly yields 5 gallons per minute (gpm) with a drawdown of 150 feet. Several wells that penetrate basement rocks near the range front have reportedly been unproductive. In general, the rocks transmitted only small amounts of ground water along joints and fractures. Consequently, depth to water, hydraulic gradients, and recharge and discharge features are extremely erratic.

Where the bedrock series is exposed at the ground surface, ground water may occur in open joints and fractures where little filtering action takes place. Under such conditions, there is often danger of contamination from surface sources.

St. George Formation

Massive, poorly-indurated, marine siltstone and shale with irregular thin beds of sand are exposed in the sea cliff beneath the Battery Formation between Point St. George and Crescent City (see Photo 1). The sedimentary deposits of the St. George Formation indicate deposition in a bay or lagoon during Pliocene time. Seismic evidence and boring logs from the recent prison site investigations at Malarkey Forest and Story Ranch suggest the formation may be buried under younger deposits beneath a large portion of the south half of Smith River Plain. At very low tides, the St. George is exposed at the extreme south end of the plain. A thickness of about 45 feet is exposed in the sea cliff near the county airport, and a maximum formational thickness of 400 feet has been estimated (USGS, 1957). Beds of the St. George Formation strike north 50 degrees west and dip about 12 degrees northeast, indicating gentle folding before deposition of the overlying Battery Formation.

The overall permeability of the St. George Formation is very low. When ground water moving vertically through the Battery Formation encounters the St. George, it is restricted, so it moves laterally along the contact in the direction of the ground water gradient. Photo 1 shows ground water discharging at the contact along a bluff west of Crescent City. The St. George Formation does have two prominent joint sets (see Photo 2) that give the formation a high, localized secondary permeability that yields limited water to some wells.

Water-Bearing Formations

Five water-bearing, geomorphic groups were identified earlier. Each has distinct geologic units that, due to their mode of deposition, affect the occurrence and movement of ground water through the formations. These units are described below, and some of their water-bearing characteristics are summarized.

Battery Formation

The Pleistocene Battery Formation is a thin, flat-lying, marine terrace deposit unconformably overlying basement rocks or the St. George Formation (see Photo 3). A typical section consists of lenticular, poorly stratified beds of silty sand alternating with thin clay layers. This formation includes some contemporaneous, stream-deposited sand and gravel east of Lake Earl. Subsurface data indicate the thickness of the Battery Formation ranges from 30 to 70 feet and averages 45 feet thick. It underlies most of the plain south and east of Lake Earl and forms the narrow marine terrace north of the mouth of Smith River.

The principal aquifer south of Fort Dick, in the Crescent City area, is in the Battery Formation. The producing zones consist of lenticular beds of fine- to medium-grained, well-sorted sand. These sand beds are usually encountered at about 25 feet but may be found from 2 to 40 feet below ground surface. East of Lake Earl, the sands and gravels form a more or less continuous aquifer, extending from Fort Dick to a drainage divide between Jordan and Elk Creeks. Depth to this aquifer ranges from 5 to 30 feet and averages about 20 feet. Ground water is either perched or unconfined in these aquifers. The permeability ranges from 150 to 900 gallons per day (gpd) per square foot and is commonly about 350 to 450 gpd per square foot. The formation is moderately permeable, but has limited saturated thickness. Well yields are large enough for domestic and limited irrigation uses. However, most wells are not drilled through the total thickness of the formation and their average depth is about 30 feet. If wells were completed through the entire thickness and well screens or gravel packing used, yields should increase appreciably.

The Battery Formation is recharged by subsurface inflow from adjacent alluvial fans to the east, sand dunes to the west, and from direct infiltration of rainfall. Due to the tight clayey nature of the upper part of the Battery Formation, recharge is slow in some places.

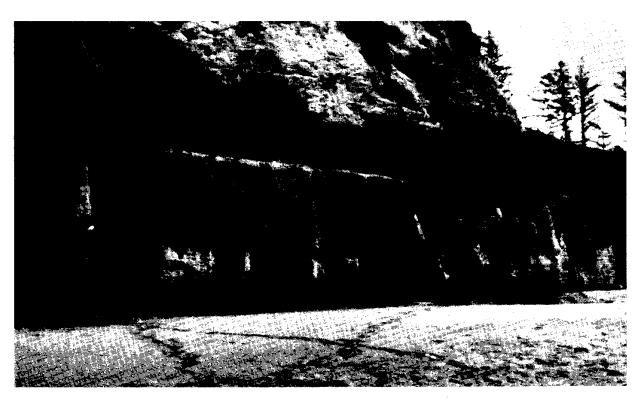


Photo 1. St. George Formation showing seepage at upper contact.

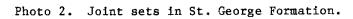


Photo 3. Battery Formation overlying St. George Formation.

River Terrace Deposits

Pleistocene deposits that form the terraces flanking Smith River and Rowdy Creek floodplains consist of silt, sand, and gravel with some clay. Generally, these deposits become coarser with depth and large boulders are often encountered at the base. Photo 4 shows the typical rock size and sorting found in these deposits. Well logs indicate the deposits range in thickness from 30 to 40 feet near Fort Dick to over 55 feet near the community of Smith River. Generally, they are underlain by basement rocks, but locally they may rest on the Battery or St. George Formations. The upper 10 to 15 feet are usually clayey due to soil development and weathering.

The river-terrace deposits serve as aquifers and as ground water recharge areas for adjacent formations. These deposits are moderate to highly permeable, with permeabilities ranging from 1,000 to 2,000 gpd per square foot. However, due to the limited saturated thickness, yields to wells are not generally high. Several irrigation wells in the Fort Dick and Rowdy Creek areas yield 140 to 400 gpm; specific capacities range from 15 to 60 gpm per foot of drawdown. Well yields sufficient for domestic needs can almost always be developed. However, some of the smaller terraces may not have enough storage

to provide water through the summer months. Recharge is by direct infiltration of rainfall, subsurface inflow from alluvial fans to the east, influent seepage from streams, and infiltration of irrigation water.

Photo 4. Fort Dick river terrace deposits showing typical clast size range (hammer for scale) and sorting.

Alluvial Fan Deposits

Recent alluvial fans form a steep, nearly continuous apron less than one mile wide along the base of the mountains. These deposits consist primarily of poorly-sorted, subrounded rocks in a silty clay matrix. The occasional sand and gravel lenses represent buried stream channels. The bulk of the unit was probably derived from landslides and possibly mudflows rather than entirely from stream deposition.

Permeability of the fan deposits is generally very low, due to large amounts of interstitial clay. However, some lenses of sand and gravel have a relatively high permeability, particularly at the distal or western end of fans, where streams have had a chance to rework and remove much of the clay.

In general, yields to wells penetrating only alluvial fan deposits are relatively low but can be highly variable. Reportedly, these deposits sometimes do not yield enough water for domestic use.

Ground water moves from the fan head westward into adjacent deposits. Water levels vary primarily with topography, ranging from about 5 to 30 feet beneath the ground surface.

Dune Sand

Recent eolian, or windblown, sand deposits form dunes that cover an area along the ocean more than 10 miles long and about one mile wide, from Point St. George to the mouth of Smith River. These deposits consist of well-sorted, medium to fine sand. Finer-grained soils have developed in the interdune areas where drainage is poor. The total thickness is unknown, but the sand ridges stand 60 to 70 feet above the marine terrace surface and above sea level. Therefore, the dune sand can be assumed to reach a thickness of at least 70 feet.

The dune sand is moderate to highly permeable and yields sufficient water for domestic and stock wells. Recharge is derived entirely from precipitation. Ground water moves away from the sand ridges and discharges eastward into Lake Earl and westward into the ocean, and a part is lost by evapotranspiration. Some water is also recharged to adjoining alluvium and the Battery Formation. In the sand dune area, depth to water in wells ranges from about 3 to 25 feet or more, depending on the elevation of the land surface. Ponds often occur in interdune areas where the water table intersects the land surface.

Floodplain Deposits

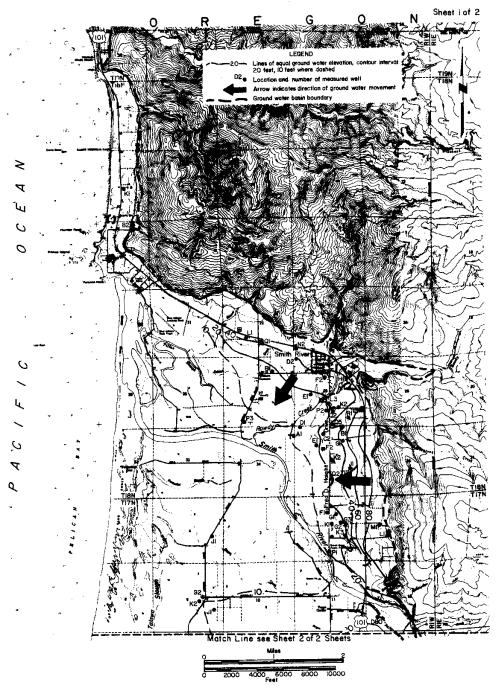
Recent floodplain deposits underlie the present floodplain of Smith River and its tributaries. These deposits rest on basement rock or Battery Formation and lap onto river terrace deposits along the edge of the floodplain.

Floodplain deposits generally consist of gravel, sand, and some silt. The sands and gravels are well-rounded and poorly sorted. Boulders and cobbles are common where the river flows out of the mountains. As the floodplain spreads out over the platform, the gravels generally become finer. Silty soils, 2 or 3 feet thick, cover the floodplain deposits except in the active channels of Smith River and Rowdy Creek. The floodplain deposits range in thickness from about 40 to 95 feet.

The floodplain deposits contain large amounts of unconfined water and are the most productive aquifers in the Smith River Plain. Consequently, most of the irrigation well development is in this area. Yields to irrigation wells range from about 200 to 800 gpm. Permeabilities range upward from 6,000 gpd per square foot and average about 10,000 gpd per square foot.

Sources of recharge to the floodplain deposits include direct infiltration of precipitation, subsurface inflow from adjacent deposits, seepage of applied irrigation water, and influent seepage of Smith River and Rowdy Creek during high flows.

Ground Water Hydrology

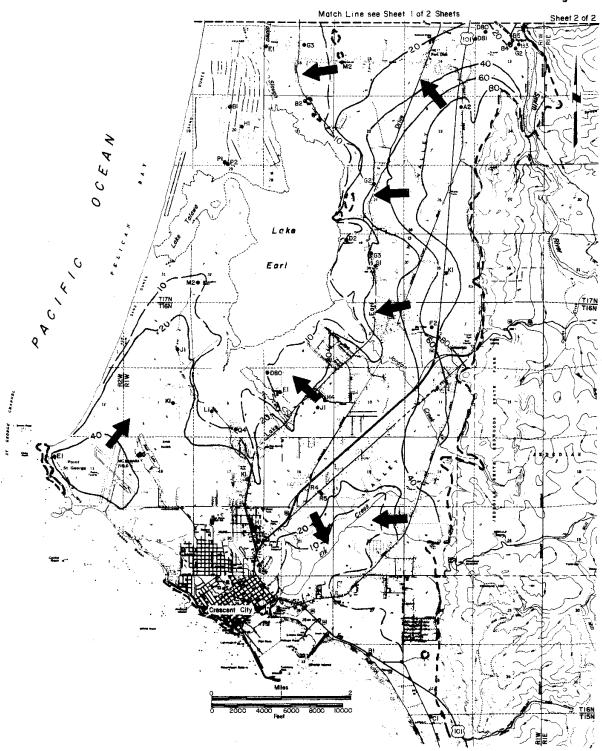

This discussion of ground water movement and fluctuation is based on water-level measurement made between July 1985 and June 1987 and four continuous water-level records. A contour map was drawn for spring 1987 using 105 well measurements.

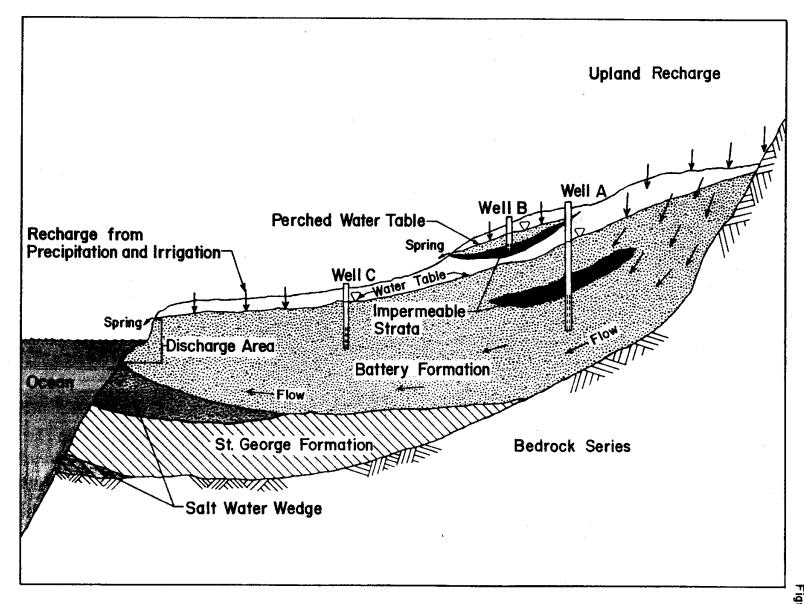
Direction of Movement

Ground water in the Smith River Plain generally moves from east to west from the base of the hills to Lake Earl and the ocean (see Figure 7). In the northern half of the basin, the water table slopes westerly away from the mountain front with a gradient of about 85 feet per mile between U.S. 101 and Fred D. Haight Drive. On the river terrace adjacent to the Smith River, the ground water gradient is very flat. The USGS original contouring showed that from the Crescent City Ranney well to about half a mile below Dr. Fine Bridge (see Figure 2 for locations), the river gains water from the bank. Recent water-level measurements made at monitor wells near the Ranney well indicate ground water may be moving away from the river and into the south bank at the well. Below that, detailed water-level contours show the water moving back toward the river as originally contoured. Because the local gradient is so flat, the direction of movement depends on river stage and the elevation of adjacent ground water levels. About half a mile below the bridge, the river gains water from its north bank and loses water into its south bank. The shape of the 10-foot contour to the south suggests that ground water moves under low head through the swampy area to Talawa Slough and Lake Earl.

In the southern half of the basin, the gradient is about 50 feet per mile between U. S. 101 and Lower Lake Road. One mile north of Crescent City, there is a ground water divide. North of the divide, water flows toward Lake Earl; south of the divide, water either discharges by seepage along the sea cliffs west of the city or drains to the ocean along Elk Creek. Ground water movement in the basin south of Lake Earl probably closely follows the topography of the drainage patterns. Both Myers Creek northwest of the city and Elk Creek on the south receive ground water discharged from saturated sediments and drain to the ocean. Although few water-level measurements were available in this area, the ground water gradient seems to be very flat. The highest water-level elevations measured are near the airport, where rainfall infiltrates into sedimentary deposits overlying bedrock at a shallow depth. Ground water moves away from this area in all directions.

Figure 8 shows how ground water moves through a generalized geologic cross-section of the Battery Formation, St. George Formation, and the Bedrock series. Surficial deposits overlying these units include floodplain deposits, sand dunes, and alluvium, and the soils developed from them. These permeable sediments receive recharge from rainfall, irrigation, and subsurface infiltration. Ground water moves vertically and down gradient under the force of gravity to discharge areas. There may be localized areas where impermeable strata restrict downward movement and create perched or ponded water. This may cause seeps at the ground surface, and water levels in wells will stand above the free water table (see Well B).




DEPARTMENT OF WATER RESOURCES
NORTHEN DISPRCT

Elevation of Water in Wells
Spring 1987

Smith River Plain

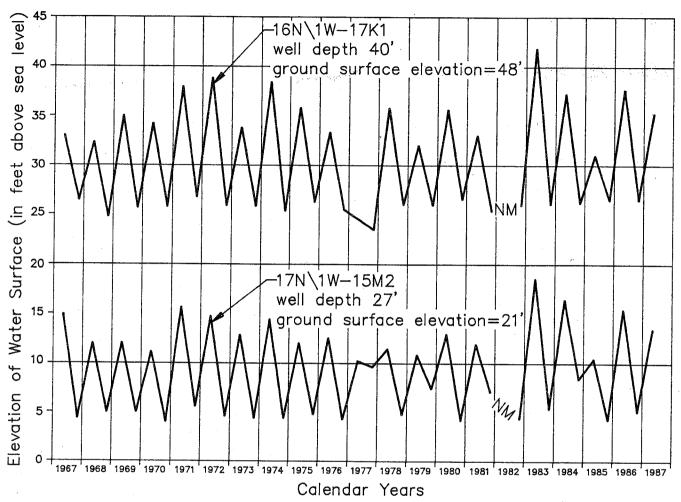
Figure 7

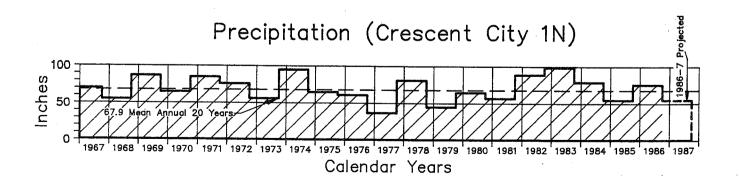
Generalized Geologic Cross Section of the Smith River Plain

In the Smith River Plain, some ground water is lost through evapotranspiration by plants. However, discharge is primarily to springs and seeps that drain into the ocean or to streams that drain into Lake Earl and Talawa. At the coastline, it is possible that salt water can move inland underneath the freshwater aquifers. The westward-sloping ground water gradient, high precipitation, and abundant ground water discharge provide a favorable hydraulic pressure against this intrusion. South and west of Crescent City, sea water cannot enter the permeable sediments because they rest on St. George Formation or the Bedrock series at or above sea level. Although there is no evidence that sea water has intruded into the basin, joints and fractures in the St. George Formation and Bedrock series may contain saline water to a limited extent.

Ground Water Fluctuations

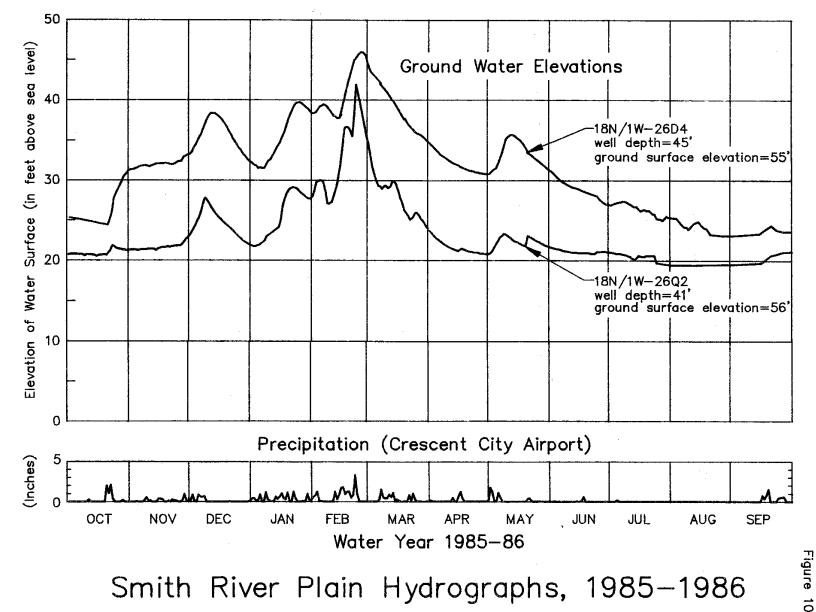
The Department has made semiannual measurements at some wells in the basin since 1953. The hydrograph records of two of these wells are shown in Figure 9 for 1967 to the present. Well 16N/1W-17K1 is 40 feet deep and probably taps free ground water in the Battery Formation. The record shows that the water level varies from about 22 feet below ground surface in the fall to 10 to 15 feet below ground surface in the spring. The spring measurement varies according to the precipitation near the time of measurement. The anomalously low water-level measurement in the spring of 1977 coincides with belownormal rainfall that year. Although the spring water level was below average in 1977, the record shows nearly 12 feet of water-level recovery at this well by spring of 1978.


Well 17N/1W-15M2 is 27 feet deep and taps free ground water in the Smith River terrace deposit. The record for this well shows about 7 feet of annual water level fluctuation compared to about 10 feet of annual change at well 16N/1W-17K1. This probably results from the stabilizing influence of Smith River seepage on the ground water north of Lake Earl.


Figure 10 shows hydrographs of two wells near the town of Smith River. The graphs were made from continuous water-level recorder data collected during 1985-86. These records show that ground water levels change by as much as 5 to 8 feet during intense rainstorms lasting 2 to 3 days. At well 17N/1W-26Q2, the water table begins to rise the same day the storm began. Ground water decline or discharge after the storm is also quite fast. At well 17N/1W-26D4, ground water recharge begins rapidly. After the storm, the discharge is slower than at the first well. Both records, however, indicate the geologic material is highly permeable in these two areas, and ground water moves through it rapidly.

These records indicate that the most reliable water-level measurement of the Smith River Plain's overall condition is the fall measurement. In other basins, ground water pumpage makes the fall measurement highly variable. In the Smith River Plain, rainstorms cause rapid changes in the water table during the winter and spring. Rapid ground water movement probably equalizes local pumping depressions so that fall water-level measurements reflect the static water table better than spring measurements.

Figure 9



Smith River Plain Hydrographs, 1967-1987

Smith River Plain Hydrographs, 1985-1986

Preliminary data from the water level recorders near Lake Earl suggest that ground water is discharging to the lake from all around its perimeter. During May, after the Lake Earl/Talawa spit closed off, the lake level rose 0.1 foot per day. During that same period, the water level at well 17N/1W-34Dl, about 600 feet from the lake, dropped 0.1 foot per day. All the other well recorders near the lake showed the same trend, discharging ground water as the lake level rose.

Ground Water Use

The storage capacity of the Smith River Plain Ground Water Basin is nearly 100,000 acre-feet (USGS, 1957). The estimated ground water use in 1985 (see Table 1 below) was about 13 percent of the storage capacity of the basin. Of this amount, 9,700 acre-feet were used for irrigation, 3,300 acre-feet were used for municipal and industrial purposes. The irrigation use may vary from year to year due to changing economic conditions and rainfall. The monthly municipal demand varies up to 40 percent due to the seasonal influx of tourists and the operation of the fisheries processing plants. A large impact on water use will be the new State prison, which will create an estimated additional demand of 1,000 acre-feet from the municipal system (D. Gustafson, pers. comm.).

Table 1. Estimated 1985 Water Use (DWR, 1987)

	Acre-feet			
Annual change in storage		+21,700		
Agricultural use	9,700			
Municipal/industrial use	3,300			
Total annual pumpage		-13,000		
Minimum natural discharge		- <u>8,700</u>		

Between April and October, when there is very little recharge to the ground water basin from precipitation and an unknown amount of recharge from subsurface inflow, the average lowering of the ground water level is about 7 feet. This change in water level corresponds to 21,700 acre-feet* of water. If 21,700 acre-feet represents the minimum annual change in storage, then the

Calculated using an average specific yield of 10 percent and a basin area of 31,000 acres.

basin must be discharging at least 8,700 acre-feet during the summer months. During the winter, the discharge is much higher. These figures show that there is huge surplus of unused ground water available in the basin for present and projected future water needs.

There are, however, two problems that will limit use of ground water in the basin. One problem is that well yields vary depending upon the local geology and hydrology. As discussed in previous sections, there are few locations where well yields exceed 500 gpm. This will limit the ground water use for irrigation, municipal, and industrical use in some places due to the low yields. The other problem is changes in the ground water quality.

Even though there is sufficient quantity of ground water for future use, degradation of this resource can limit its beneficial uses. The ground water in the Smith River Plain is unconfined, which means it is also unprotected from surface contaminants. In areas where the percolation rates are high, transport of contaminants into the ground water can be rapid. In areas where the percolation rates are low, a high water table may exist. Poor drainage in these areas can lead to septic system failures and leakage of poor quality surface water into domestic wells. Both of these situations (rapid percolation and high water table) restrict the effectiveness of the natural filtration in the unsaturated zone above the free ground water table.

WATER QUALITY

Water acts as a solvent on minerals and soils as it passes over the earth's surface and underground. The amount and kinds of suspended or dissolved constituents reflect the many elements present in the environment of the hydrological cycle. The addition of these constituents may have a significant effect on the chemical behavior of the water and change its value for beneficial use.

Most of the dissolved mineral constituents in water are in the form of ions. The most common positively charged ions (cations) are calcium, magnesium, sodium, and potassium. The negatively charged ions (anions) include carbonate, bicarbonate, sulphate, chloride, and nitrate.

The mineral character or type of water is based on the predominant cation and anion, as indicated in chemical equivalent per million (epm). The name of the cation is used when its chemical equivalents constitute 50 percent or more of the total cations. Similarly, this applies to the anion group. For example, a magnesium bicarbonate character water is one in which the magnesium cation and bicarbonate anion each constitute half or more of the individual totals of cations and anions. Where no single constituent exceeds 50 percent, hyphenated combinations are used. An example is a magnesium-calcium bicarbonate water.

This section presents the water quality criteria, ground water quality, and a discussion of ground water quality problems in the Smith River Plain. Mineral analyses of ground water samples collected from wells in Del Norte County are listed in Appendix D. Minor element analyses are included in Appendix E. Appendix F contains water quality guidelines for agriculture water use.

Water Quality Criteria

As the two major beneficial uses of ground water in this basin are domestic and agriculture, water quality criteria for each were used to evaluate its quality. Sanitary surveys and bacteriological sampling were beyond the scope of this investigation and water quality evaluations were based solely on chemical and physical characteristics. Except for the constituents that are considered toxic to humans, the concentrations included in the criteria should be considered as suggested limiting values. A water that contains constituent concentrations exceeding these values need not be eliminated from consideration as a source of supply, but should be used with caution and other sources of better quality water should be investigated.

Domestic and Municipal Water Supply

The criteria used in this report for evaluating ground water for domestic use are those included in the State of California domestic water regulations for chemical and physical quality.

Water containing contaminants exceeding the maximum contaminant levels shown in Tables 2, 3, and 4 presents a risk to the health of humans when continually used for drinking or culinary purposes.

Table 2. Maximum Contaminant Levels - Inorganic Chemicals

Constituents	Maximum Contaminant Level, mg/L
Arsenic	0.05
Barium	1
Cadmium	0.01
Chromium	0.05
Lead	0.05
Mercury	0.002
Nitrate (as NO3)	45
Selenium	0.01
Silver	0.05

Table 3. Maximum Contaminant Levels - Selected Organic Chemicals

	Constituents	Maximum Contaminant Level, mg/L
(a)	Chlorinated hydrocarbons	
	Endrin Lindane Methoxychlor Toxaphene	0.0002 0.004 0.1 0.005
(b)	Chlorophenoxys	
	2,4-D 2,4,5-TP Silvex	0.1 0.01

Table 4. Limiting Concentrations for Fluoride

	ge of Maximum Temperature	_ F	luoride Con	centratio	n, mg/L
Degrees Fahrenheit	Degrees Celsius	Lower	Optimum	Upper	Maximum Contaminant Level
53.7 and below	12.0 and below	0.9	1.2	1.7	2.4
53.8 to 58.3	12.1 to 14.6	0.8	1.1	1.5	2.2
58.4 to 63.8	14.7 to 17.6	0.8	1.0	1.3	2.0
63.9 to 70.6	17.7 to 21.4	0.7	0.9	1.2	1.8
70.7 to 79.2	21.5 to 26.2	0.7	0.8	1.0	1.6
79.3 to 90.5	26.3 to 32.5	0.6	0.7	0.8	1.4

Water containing substances exceeding the maximum contaminant levels shown in Tables 5 and 6 may be objectionable to an appreciable number of people, but is not generally hazardous to health.

Table 5. Consumer Acceptance Limits -Secondary Drinking Water Standards

Constituents	Maximum Contaminant Levels
Color	15 units
Copper	1.0 mg/L
Corrosivity	Relatively low
Iron	0.3 mg/L
Manganese	$0.05~\mathrm{mg/L}$
Odor - threshold	3 units
Foaming agents (MBAS)	0.5 mg/L
Turbidity	5 units
Zinc	5.0 mg/L

Table 6. Mineralization - Secondary Drinking Water Standards

	Maximum Contaminant Levels					
Constituent, Units	Recommended	Upper	Short Term			
Total dissolved solids, mg/L or	500	1,000	1,500			
Specific conductance, micromhos	900	1,600	2,200			
Chloride, mg/L	250	500	600			
Sulfate, mg/L	250	500	600			

Agriculture Water Supply

Prior to 1974, the Department of Water Resources used water quality criteria for the suitability of water for irrigation, which had been developed by the University of California, and classified waters into three groups: Class I (excellent to good), Class II (good to injurious), and Class III (injurious to unsatisfactory). As these criteria were used, it became apparent that they were too general and not applicable in some instances.

To provide improved criteria, a University of California Committee of Consultants formulated a group of guidelines for the interpretation of agricultural water quality in the early 1970s. These 1970 guidelines have been used by the Department of Water Resources since that time and were used during this investigation. These guidelines are summarized in Table 7 and the complete guidelines are presented in Appendix F. The interpretation of these guidelines is based on the possible effects the constituents may have on crops and/or soils. Guidelines are flexible and should be modified when warranted by local experience or special conditions of crop, soil, and method of irrigation.

Table 7. Agricultural Water Supply Criteria

	Wate:	r Quality Guid	delines
Ducktons and Dalated Constituent	No	Increasing Problems	Severe
Problems and Related Constituent	<u>Problem</u>	Problems	Problems
Salinity1/			
EC_{W} of irrigation water, in millimhos/cm	<0.75	0.75-3.0	>3.0
Permeability			
EC_{W} of irrigation water, in mmho/cm adj. SAR^{2} /		<0.5 6.0-9.0	<0.2 >9.0
Specific Ion Toxicity3/			
from ROOT absorption			
Sodium (evaluate by adj.SAR)	< 3 < 4	3.0-9.0 4.0-10	>9.0 >10
Chloride (me/L) (mg/L or ppm)	<142	142-355	> 355
Boron (mg/L or ppm)	<0.5	0.5-2.0	
from FOLIAR absorption4/ (sprinklers)			
Sodium (me/L)	<3.0	>3.0	
(mg/L or ppm)	< 69	> 69	
Chloride (me/L) (mg/L or ppm)	< 3.0 < 106	>3.0 >106	
Miscellaneous5/			
NH4-N1mg/L			
or for sensitive crops No ₃ -N) ppm	< 5	5–30	> 30
HCO3(me/L)	<1.5	1.5-8.5	> 8.5
<pre>(mg/L (only with overhead sprinklers) or ppm)</pre>	< 90	90-520	> 520
рH	normal r	ange = 6.5-8.	4

Assumes water for crop plus leaching requirement will be applied.

Crops vary in tolerance to salinity. (mmho/cmX640 = approximate total dissolved solids (TDS) in mg/L or ppm; mmhoX1000 = micromhos).

2/ adj.SAR (Adjusted Sodium Adsorption Ratio) is calculated from a modified equation developed by U. S. Salinity Laboratory to include added effects of precipitation or dissolution of calcium in soils and related to CO₃ + HCO₃ concentrations.

To evaluate sodium (permeability) hazard:

pHc is a calculated value based on total cations. Ca + Mg, and CO₃ + HCO₃. Calculating and reporting will be done by reporting laboratory. NOTE: NA, CA+MG, CO₃+HCO₃ should be in me/L.

Permeability problems, related to $\underline{low\ LC}$ or $\underline{high\ adj.SAR}$ of water, can be reduced if necessary by adding gypsum. Usual application rate per acrefoot of applied water is from 200 to about 1,000 lbs. (234 lbs of 100% gypsum added to 1 acre-foot of water will supply 1 me/L of calcium and raise the EC_W about 0.1 mmho.) In many cases a soil application may be needed.

- 3/ Most tree crops and woody ornamentals are sensitive to sodium and chloride.

 Most annual crops are not sensitive. For boron sensitivity, refer to boron tolerance tables.
- 4/ Leaf areas wet by sprinklers (rotating heads) may show a leaf burn due to sodium or chloride absorption under low humidity, high-evaporation conditions. (Evaporation increases ion concentration in water films on leaves between rotations of sprinkler heads.)
- 5/ Excess N may affect production or quality of certain crops, e.g. sugar beets, citrus, avocados, apricots, grapes, etc.
 (1 mg/L N03-N = 2.72 lbs, N/acre-foot of applied water.) HCO3 with overhead and sprinkler irrigation may cause a white carbonate deposit to form on fruit and leaves.

Symbol Symbol	Name	Symbol	Name	EquivWt.
$\mathtt{EC}_{\mathbf{w}}$	Electrical Conductivity of water	Na	Sodium	23.00
mmho/cm <pre></pre>	millimho per centimeter less than more than milligrams per liter parts per million Leaching Requirement milliequivalents per liter Total Dissolved Solids	Ca Mg CO3 HCO3 NO -N	Calcium Magnesium Carbonate Bicarbonate Nitrate-nitrogen Chloride 17.1 ppm = 1 grain	20.04 12.16 30.00 61.00 14.00 35.45

Water Quality Characteristics

To determine the present quality of Smith River Plain ground water, 32 wells were sampled in the summer of 1986 (Figure 2, page 5). Temperature, pH, and EC measurements were made at the time of sampling and 29 of the samples were analyzed for standard mineral content at the Department's chemical laboratory at Bryte. In addition, 22 partial mineral analyses were supplied by the RWQCB. Wells that have historic partial and standard water quality are available from the Department of Water Resources' storage and retrieval system. These well analyses were included so that present quality could be evaluated in relation to historical variation. All of these data have been included in appendices in the back of this report.

Smith River Plain ground waters are generally of good mineral quality with total dissolved solids (TDS) contents ranging from about 50 to nearly 500 milligrams per litre (mg/L). The median level of TDS concentration is 100 mg/L. Electrical conductivity (EC) of 120 well waters ranged from 57 to 746 micromhos per centimetre (umhos/cm) at 25 degrees C. with a median of 153 umhos/cm. The highest EC level of 746 umhos/cm came from well 17N-01W-20P2, just north of Lake Talawa. This is an 18-foot shallow well producing a magnesium-calcium bicarbonate water.

A comparison of historic and recent EC records showed no discernible trend of change in the basin. Of the 21 wells having long-term water quality records, 19 had records that showed only minor changes in EC. The other two wells showed a general decrease in EC.

Smith River Plain ground waters are magnesium bicarbonate throughout most of the basin. To the south, near Crescent City, the water becomes sodium bicarbonate in character, and four wells that tap the St. George Formation contain water of sodium chloride character (see Appendix B). Two of these are drilled into St. George Formation, and the perforations are near the bottom. Both wells are in the Elk Creek drainage in the southern portion of the basin. The third well is completed in Battery Formation. However, water from this well is above the bedrock series near Point St. George. Electrical conductivity and dissolved solids data show that some of the deeper wells in the Kings Valley area, which are perforated near the bottom, are slightly higher in dissolved mineral content than the typical magnesium-bicarbonate water found in the Battery Formation. The concentrations of total dissolved solids, however, do not exceed recommended limits for drinking water.

Alkalinity and pH

Alkalinity levels in Smith River Plain ground waters, when expressed as calcium carbonate, ranged from 7 to 237 mg/L with a median concentration of 50 mg/L. Measurements of pH ranged from 5.7 to 7.3 with a median value of 6.7. Since a pH level of 7.0 is neutral, some of the waters with the lower pH's can be expected to be very corrosive.

Chlorides

Chloride levels in Smith River Plain ground waters are usually very low. Chloride concentrations in 120 ground water wells varied from 5 to 77 mg/L, with a median value of only 10 mg/L.

Sulfates

Sulfate levels in Smith River Plain ground waters are also low. In 120 ground water sources, concentrations ranged from 0 to 31 mg/L with a median value of 4 mg/L.

Hardness

Total hardness in the Smith River Plain ranges from 14 to 256 mg/L (expressed as calcium carbonate) with a median of 60 mg/L. Most of these waters are considered soft; however, three wells north of Lake Earl produce waters with hardness exceeding 200 mg/L and are considered very hard.

Sodium Adsorption Ratio

The Adjusted Sodium Adsorption Ratio (ASAR) is a useful factor in evaluating the hazard related to changes in soil permeability and resultant salt buildup caused by high concentrations of sodium in irrigation water. Levels above 3 can cause increasing problems, and levels greater than 9 can cause severe problems. ASAR values for 64 ground water sources in the Smith River Plain range from 0 to 2 and have a median of 1. This reflects the low sodium in the ground water throughout the basin.

Boron

Boron appears to pose no problems in Smith River Plain ground water. The boron concentrations in 78 ground waters range from 0.0 to 0.1 mg/L with a median concentration of 0.0 mg/L.

Nitrate

Nitrate (NO₃) levels in the ground waters of the Smith River Plain are generally low. Isolated incidences of high NO₃ have occurred, but do not appear to be related. Data from 119 ground water sources showed NO₃ levels from 0 to 66 mg/L with a median value of 7 mg/L. Most of the high NO₃ monitored was found near the town of Smith River, where 12 wells exceeded 30 mg/L as NO₃. Four of those wells exceeded the recommended limit of 45 mg/L as NO₃ for drinking water.

Suitability for Beneficial Use

The beneficial use of Smith River Plain ground water is limited locally by pesticide residue and nitrate levels that exceed the recommended limits for domestic use. The pesticide contamination is from two compounds, aldicarb and 1.2 dichloropropane, that are used to control nematodes in lily bulbs. Ground water containing these pesticide residues have been found in wells near the town of Smith River. Sampling and testing by the RWQCB shows that the aldicarb levels in these wells have been decreasing since that compound was banned in 1983. There is no recognizable trend for the concentration of the other compound.

The highest nitrate levels in the basins ground water have been found near the town of Smith River. They may be the result of poor well sealing and local aquifer contamination from septic systems, agricultural fertilizers, and/or dairy wastes. These high levels are of concern because of the relationship between high nitrates in drinking water and infant methemoglobinemia. Under certain circumstances, nitrate can be reduced in the gastrointestinal tract to nitrite, which then reaches the bloodstream and reacts directly with hemoglobin to produce methemoglobin, with consequent impairment of oxygen transport.

The reaction of nitrite with hemoglobin can be hazardous in infants under three months of age. Serious and occasionally fatal poisonings in infants have occurred following ingestion of untreated well waters shown to contain nitrate at concentrations greater than 45 mg/L. High nitrate concentrations frequently are found in shallow farm and rural community wells, often as the result of inadequate protection from barnyard drainage or from septic tanks.

SUMMARY OF FINDINGS

- 1. The Smith River Plain Ground Water Basin was formed by the emergence of a shallow submarine platform. The main aquifers occur in marine terraces, river terraces, floodplain and alluvial deposits, and sand dunes.
- 2. Ground water aquifers in the Plain are unconfined and free hydrologic interchange occurs among adjacent geologic units.
- 3. The Battery Formation contains the major aquifers tapped by domestic wells. The floodplain aquifers have the highest yield and supply the majority of irrigation wells in the basin.
- 4. Ground water movement is generally from east to west from the base of the hills to Lake Earl and the ocean. In some places, the gradient is so flat that the direction of ground water movement depends on local river and lake height, and recent precipitation.
- 5. Continuous water level records show that in some places ground water levels respond rapidly to precipitation throughout the year. In other places, a high water table indicates slow percolation rates may limit ground water movement.
- 6. Ground water will remain one of the most important sources of water supply for the Smith River Plain. Only about 13 percent of the basin's estimated 100,000 acre-feet of storage capacity is currently being used. The remaining ground water is either in storage or moving through the basin.
- 7. Smith River Plain ground waters are generally of good mineral quality with total dissolved solids contents ranging from about 50 to nearly 500 milligrams per litre (mg/L). The median level is 100 mg/L. This water meets the mineral water quality requirements for municipal and domestic uses and is of good quality for irrigation purposes.
- 8. A limited area of ground water near the town of Smith River is contaminated with pesticides and has higher than recommended nitrates. These water quality problems will be discussed in a separate report to be published in 1988 by the RWQCB.

CONCLUSIONS

- 1. The expanded and updated water quality sampling grid presented in Figure 2 (page 5) should be implemented to annually monitor the basin's mineral quality.
- 2. The expanded and updated water-level measurement grid for this study (Figure 2) should also be implemented. It is adequate to contour the ground water elevation in the basin. Annual water-level change can be found by measuring these wells twice a year. Recent precipitation must be considered when evaluating the spring measurement.
- 3. Heavy precipitation, numerous streams, and the Smith River provide an abundance of good quality water for annual recharge of the ground water basin. The resulting mineral quality of ground water in the Smith River Plain is generally excellent and is suitable for most beneficial uses.
- 4. Ground water occurs in and moves through unconfined aquifers at shallow depths. These two factors threaten ground water quality by limiting the natural filtration that normally occurs as recharge waters move through the ground. Discharge of wastes and use of toxic materials need to be carefully controlled if pollution is to be prevented.
- 5. There is localized ground water impairment in the basin in the Smith River area, where some wells are contaminated with pesticides. This pesticide problem will be the subject of a future report by the RWQCB.
- 6. There is also localized ground water impairment from nitrate in the Smith River area, which needs to be monitored.

RECOMMENDATIONS

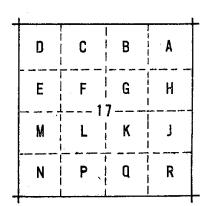
- 1. The Del Norte County Department of Public Works should continue monitoring ground water levels for the next year with the eight continuous water-level recorders installed by the Department of Water Resources around Lake Earl. The water level should be monitored and surface water samples should be taken monthly at Lakes Earl and Talawa and tested for EC, pH, and temperature. A standard mineral analysis should be run at seasonal high and low EC values.
- 2. The continuous recorder near the Crescent City Ranney well should be maintained on a biweekly basis in order to get detailed information on ground water movement. This recorder will also provide historic water-level data to analyze the impact of additional pumpage at the Ranney well if that system is expanded to accommodate the Del Norte County Prison.
- 3. The County should enforce well-sealing standards. This is especially critical in areas where toxic materials are used. The practice of storing chemical pesticides in or near well pump houses should be ended immediately.
- 4. The County should canvass domestic wells for nitrate and total and fecal coliform bacteria in the Smith River area. New well construction and property exchanges involving domestic water wells should include a water analysis for nitrate.

REFERENCES

- Addicott, Warren O. "Interpretation of the Invertebrate Fauna from the Upper Pleistocene Battery Formation Near Crescent City, California". Proceedings of the California Academy of Sciences, Fourth Series. Vol. 31, No. 13, pp. 341-347. 1963.
- California Department of Corrections. "Final Geotechnical and Geological Report, Technical Site Suitability Study of Two Proposed Prison Sites, California State Prison, Del Norte County, California". Prepared by J. H. Kleinfelder and Associates. July 1986.
- . "Report of Additional Geological and Geophysical Investigations,
 Technical Site Suitability Study of Two Proposed Prison Sites, California
 State Prison, Del Norte County, California". Prepared by J. H. Kleinfelder and Associates. August 1986.
- . "Report on Results of Geotechnical Investigation Onsite Improvements, California State Prison, Del Norte County, California". Prepared by J. H. Kleinfelder and Associates. February 1987.
- . "Hydrogeologic Feasibility Study, Del Norte Prison, Proposed Rapid Infiltration Basins, Fort Dick Area, California".

 Prepared by J. H. Kleinfelder and Associates. March 1987.
- California Department of Water Resources. "Water Well Standards: Del Norte County". Bulletin 74-3. August 1966.
- . "Sea Water Intrusion in California Inventory of Coastal Ground Water Basins". Bulletin 63-5. October 1975.
- . "Water Well Standards: State of California". Bulletin 74-81.

 December 1981.
- . "Water Conditions in California". In press. Bulletin 160-87.
- McLaughlin, J., and Harradine, F. "Soils of Coastal Del Norte County, California". University of California, Davis. March 1966.
- Oregon Department of Water Resources. "Ground Water Conditions on the Harbor Bench, Southwestern Curry County, Oregon". Ground Water Report No. 26. March 1977.
- U. S. Army Corps of Engineers. "Flood Plain Information Lake Earl, Lake Talaway, and Lower Smith River". San Francisco District. June 1971.
- U. S. Geological Survey. "Geology and Ground Water Features of the Smith River Plain, Del Norte County, California". Water Supply Paper No. 1254. 1957.
- . "A Preurbanization Reconnaissance Study of Lake Earl, Del Norte County, California". Open-File Report. December 1971.
- Woodward-Clyde Consultants. "Del Norte County Pesticide Storage Area Site Remedial Investigation". Final Report. September 1985.


Appendix A Well Numbering System

APPENDIX A

WELL NUMBERING SYSTEM

During this study, current water level and ground water quality data were combined with historic data to get a better understanding of the present ground water quality and detect changes that may have occurred. The wells used in this study have been qualified as to what formation they draw water from. This qualification, the well construction, and general water chemistry are presented in Appendix B. Current and historic water levels and water quality data have been included in Appendices C, D, and E. Appendix F contains the agricultural water quality guidelines used in this report. Each well has been numbered according to the California State Well Numbering System, and data in the appendices are listed by that number. All data have also been entered in the Department of Water Resources' data storage and retrieval system (WDIS) so that they are available for dissemination and updating.

The well numbering system uses the township, range, and section subdivisions of the Public Land Survey as its base. Each section is then divided into sixteen 40-acre tracts, lettered as follows:

16N/3E - 17K1H

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned California State well numbers. For example, a well which has the number 16N/3E-17K1H would be in Township 16 North, Range 3 East, Section 17. K1 further designates it as the first well assigned a State well number in Tract K. The location of the wells used in this study are shown in Figure 2.

Appendix B Well Qualification and Water Character

WELL NUMBER	NUM DEPTH YI		YIELD	YIELD QUALIFICATION		CONSTRUCTION	QUALITY	
16N\01H- 2J1	0000	36		FREE-DEFINITE	ALLUV FAN	PERF CASING 22\34	WL DNLY	
16N/01W- 203	****	30		FREE-PROBABLE	BATTERY	1 2/1 2/102/12 22/12/	Ca-MgHCO3	
16N/01W- 3F1	140619	32	20?	FREE-DEFINITE	BATTERY	PERF CASING 24\32	MgHC03	
16N/01W- 3N8		36		FREE-PROBABLE	BATTERY		MgHC03+NO	
16N/01W- 8Q4		24		FREE-PROBABLE	BATTERY		MgHC03/Na(
16N/01W- B05	13738	35	207	FREE-DEFINITE	BATTERY	GRVPK,PERFD 30\35	NaHCO3+NO	
16N/01W- 9H4	140634	40	20?	FREE-DEFINITE	BATTERY	GRVPK,PERFD 35\40	MgHC03	
16N/01W- 14M2	132269	35	20?	FREE-DEFINITE	ST GEORGE	GRVPK,PERFD 30\35	NaC1	
16N/01W- 15F2	113165	35	15?	FREE-DEFINITE	BATTERY	GRVPK,PERFD 30\35	MaHC03	
16N/01W- 17K1		40		FREE-PROBABLE	BATTERY		WL DNLY	
L6N/01W- 17K4	112859	40	187	FREE-DEFINITE	BATTERY	GRVPK,PERFD 35\40	MgHC03+CL	
16N/01W- 20H1		31		FREE-PROBABLE	BATTERY	,	MgHCO3/Na(
IAN/01W- 2002	42626	40	i8 ·	FREE-DEFINITE	BATTERY	PERF CASING 32\40	MgHC03	
16N/01W- 21F1	1006	35	15	FREE-DEFINITE	ST GEORGE	PERF. CASING 30\33	NaC1	
L6N/01W- 22J4	139788	38	ó	FREE-PROBABLE	BATTERY	GRVPK,PERFD 33\38	Na-MgHC03	
16N/01W- 26M9	113152	36	15?	FREE-DEFINITE	BATTERY	PERF CASING 31\36	MgHC03/Na(
16N/01W- 34B1	132290	30	10	FREE-DEFINITE	ST GEORGE	PERF CASING 25\36	NaHC03	
L6N/02W- 13E1		30		FREE-PROBABLE	BATTERY	HAND DUG	NaC1	
17N/01W- 2G1		50		FREE-PROBABLE	RIVER TER	CASED TO BOT	MgHC03+N03	
7N/01W- 2P1		27		FREE-PROBABLE	RIVER TER		WL ONLY	
.7N/01W- 3E1		25		FREE-PROBABLE	RIVER TER		WL ONLY	
7N/01W- 4J1		35		FREE-POSSIBLE	RIVER TER		MgHC03	
7N/01W- 4L3	45705	32		FREE-DEFINITE	RIVER TER	PERF CASING 22\32	MgHCO3	
.7N/01₩- 961				FREE-PROBABLE	BATTERY		MgHC03	
.7N/01W- 9K2		17		FREE-PROBABLE	BATTERY	HAND DUG	MgHC03	
.7N/01W- 14C2	1551	40		FREE-DEFINITE	RIVER TER	PERF CASING 32\40	MgHC03	
.7N/01W- 14K4	132268	47	15?	FREE-DEFINITE	BATTERY	PERF CASING 42\47	MgHC03	
7N/01W- 14R2	113167	50	15?	FREE-DEFINITE	BATTERY	PERF CASING 45\50	MgHC03	
7N/01W- 15M2		30		FREE-PROBABLE	RIVER TER		WL ONLY	
7N/01W- 16F1	139761	23	40?	FREE-DEFINITE	BATTERY	PERF CASING 14\23	MgHC03	
7N/01W- 20H1	13721	30	20?	FREE-DEFINITE	SND DUNES	PERF CASING 25\30	Ca-MgHC03	
.7N/01W- 20P1		?		FREE-PROBABLE	SND DUNES	UNKNOWN	WQ-CaHCO3	
7N/01W- 20P2		18		FREE-PROBABLE	SND DUNES	HAND DUG	.WL-MgHC03	
7N/01W- 22E6	113189	40	15	FREE-DEFINITE	BATTERY	PERF CASING 35\40	MgHC03	
7N/01W- 27G2	13730	40	207	FREE-DEFINITE	BATTERY	PERF CASING 32\40	MgHCD3	
7N/01W- 2705		25		FREE-PROBABLE	BATTERY	HAND DUG	WL ONLY	
7N/01W- 34G3	13707	30	20	FREE-DEFINITE	BATTERY	PERF CASING 22\36	MgHC03	
7N/01H- 35K1	29961	33	20.	FREE-DEFINITE	BATTERY	PERF CASING 12\28?	MgHC03	
8N/01W- 5K1	120125	56		FREE-DEFINITE	MARINE TER	PERF CASING 44\56	MgHC03 Ca-MgHC03/	
BN/01W- 27P3		25	•	FREE-PROBABLE	RIVER TER		WL ONLY	
8N/01W- 34M2		27		FREE-PROBABLE	RIVER TER		MgHC03	
L8N/01W- 35B1/2	140	55		FREE-DEFINITE	BATTERY	PERF CASING	WL-NaC1HCO	

Appendix C Ground Water Level Measurements

ι	'n	
i		

GROUND WATER LEVELS MEASURMENT				WELL-MASTER RECORDS				,	BATE 04/29/86			PAGE 1	
TA R	AREAL CODE	STATE WELL NUMBER	DATE OF RECORD	WELL DEPTH	COUNTY	REF PT ELEV	GROUND	LATITUDE	LONGITUDE	AGENCY	AQUIFER		
,	F-10.00	05N/01E-20001 H	06/07/51		12 12	22.0	22.0			5000			
	F-10.00 F-10.00	06N/01E-07H01 H 06N/01E-17D01 H	09/25/73 10/27/59		12	12.0	11.0 23.0			5050 5001			
	F-10.00	06N/01E-19001 H	09/30/70		12 12 12 12	23.4 21.0	10_D			5050			
	F-10.00	06N/01E-29P01 H 06N/01E-30N01 H	11/09/65		12	27.0	25.0 12.0			5050 5000			
	F-10.00 F-07.A0	10N/01E-04:01 H	06/07/51 03/31/82	**	12	13.4	12.0 21.0			5000 5050 5050			
	F-07.A0	11N/01E-02R01 H	09/21/78	36 53	12	22.0 171.0	170.0			5050			
	F-07.A0	11N/01E-33R04 H 13N/01E-15R01 H	03/08/79 04/09/79	48 200	12	37.0	32.0 50.0			5050 5050 5050 5050			
	F-11.A1	02N/01N-08801 H	09/30/70	200	08 12 12	51.0 34.0	34.0			5050 \$050			
	F-11.A1	03N/01W-18D01 H	10/15/69		12	16.0	34.0 15.0			5050			
	1-10.00 F-11.A1	03N/01W-26R01 H 03N/01W-30N01 H	06/08/51 09/25/73		12 12	12.0 19.0	12.0			MARK			
	F-11.A1	03M/01W-34J01 H	10/15/69 09/25/73		12	54.0	15.0 53.0 10.0			5050 5050			
	F-11_A1	03N/02W-13J01 H	09/25/73		12	10.5	10.0			5050 5050 5000			
	F-11.A1	03N/02W-26R01 H 03N/02W-35M02 H	11/09/65 09/25/73		12 12	12.0 14.0	12.0 13.0			5000			
	F-10.00	04N/01N-16H01. H	05/02/78	210	12	11.0 106.0	10.0			5050 5050			
	F-08.A0	09N/01W-24C01 H	09/21/78	40	12	106.0	105.0			5050			
	F-03.A1 F-03.A1	16N/01W-02J01 H 16N/01W-17K01 H	07/06/53 07/06/53	20 40	04	127.0 49.0	127.0			2020			
	F-03.A1	17N/01M-02P01 H	05/28/52	27	ÖĞ	31.0 14.3	48.0 31.0			5050			
	F-03. A1 F-03. A1	17N/01W-03E01 H 17N/01W-15H02 H	07/08/53 07/25/53	36 40 27 25 27 28 25 24 55	08 08 08 08 08 08 08 06 06 06 04 04	14.3	14.0 21.0			5050 5050 5050 5050 5050 5050 5050			
	F-03.A1	17N/01W-20001 H	04/10/73	26	6	21.4 16.0	15.0			SUSU Maris			
	F-03.A1 F-03.A1	17N/01W-27905 H	04/10/73	25	08	42.5	40.0						
	F-03.A1 F-03.A1	18M/01W-27P03 H	04/10/73	24 65	06	16.5 91.0	15.0 90.0			5050			
	A-07. AO	18N/01W-35802 H 13N/01E-11A01 H	11/28/56 07/01/51	145	õš	32.4	31.8			5050 5050 5050 5050 5050 5050 5106 5001			
	A-07.A0	13N/01E-32001 M	03/28/67	76	06	\$6.0	23.0 37.0			5050			
	A-07.A0 A-07.b0	14N/01E-21L01 M	09/31/70 03/10/52	126	06 04	37.5 70.0	37.0			5050			
	A-07.00	17N/01E-01R01 H 17N/01E-03A01 H	02/05/47	126 220	Ŏ4	64.2	69.5 63.2			5001			
	A-07.00	17N/01E-10A01 H	03/10/53	110	04	63.0	63.0			2100			
	A-07.00 A-07.00	17N/02E-06001 M	08/12/64 12/13/29 11/26/29	- 22	8	71.5 76.0	71.0 74.5			5050 5001			
	A-07. CO	17N/02E-08001 H 17N/02E-12A01 H	11/26/29	103	04	89.2	90.0			5001		,	
	A-07.CO A-07.CO	17H/02E-14A01 M	04/07/47	25 24 103 102 95	04 04 04 04 04	79.5 75.0	82.5 74.0		•	5001 5001 5001 5001 5001			
	A-08.00	17N/03E-01R01 H	07/31/53		<u>~</u>	100.5	100.0			5001			
	A-08.00	17N/03E-03b01 M	04/10/47	179 137	04	97.0	95.0 96.0			5106 5106			
	A-07.CO A-07.CO	17N/03E-05C01 M 17N/03E-08601 M	04/10/47 03/12/53	137 140	04 04	96.0 90.3	96.0 90.0			5106 5106			
	A-06.00	17N/03E-13NO1 M	01/21/76	420	04 04	86.0	85.0			5050			
	A-08.00	17N/03E-14H01 H	03/01/67		04	92.5 85.5	92.0 85.0		•	5050 5106 5106			
	A-07.E0 A-08.D0	17N/03E-16N01 M 17N/04E-05C01 M	.03/12/53 05/02/61	178	04 04 04	85.5 95.2	85.0 95.0			5106 5106			
	A-08.00	17N/04E-08A01 M	05/02/61	290 270	84 84	96. D	96.0			5106			
	A-06.00	17N/04E-08L01 M	05/02/61	270	04	9 2.2	92.0			5106			
	A-08.00	17N/04E-16E01 M	11/27/29	175	04	106.0	106.0			5000			

STATE WELL NUMBER	GROUNG CO SURFAC ELEVATI	F DATE	GROUND TO WATER	WATER SURFACE AGENCY ELEV.	STATE WELL NUMBER	C	GROUND O SURFACE ELEVATION	DATE	GROUND TO WATER	WATER SURFACE ELEV.	AGENCY
F-03 F-03.A F-03.A1	NORTH COAST HB SMITH RIVER HU LOWER SMITH RIV SMITH RIVER PLA	ER HA IN HSA			f F-03 F-03.A F-03.A1	NORTH SMITH LOWER SMITH	COAST HB RIVER HU SMITH RIVER RIVER PLAIN	HA HSA			
16N/01H-02J(O1 H 127.0	07/06/53 07/30/53 07/30/53 09/20/54 11/17/58 12/18/58 01/20/59 02/18/59 02/18/59 03/18/59 05/23/59 05/23/59 06/23/59 07/23/59 08/25/59 08/25/59 08/25/59 08/25/59 08/25/59 08/25/60 01/26/60 05/24/60 06/27/61 06/27/61 06/27/61 07/27/61 07/27/61 07/27/61 07/27/61 07/27/61 07/27/61 07/27/61	16.337.011.6038.01.821.41.037.99.41.67.2089.608801.21.53.15.16.801.82.208.16.16.19.7.2089.608801.21.55.16.801.55.16.801.55.16.801.55.16.801.55.16.801.55.16.801.55.16.801.55.16.801.55.16.801.55.16.805.16.801.55.16.805.16.801.55.16.805.16.16.	10.3 108.7 107.3 112.0 112	16N/01W-02J(01 н		77/25/62 78/25/62 78/25/62 78/25/62 79/25/62 79/25/63 79/25/63 79/25/63 79/25/63 79/25/63 79/25/63 79/25/63 79/25/63 79/25/63 79/25/64	19.03.62.95.5.8.89.5.02.62.000.62.60.06.3.9.9.7.9.3.4.2.7.7.6.6.7.9.6.6.7.4.0.11.11.11.11.11.11.11.11.11.11.11.11.1	107-07 107-07 107-07 117-4 117-5-22 117-5-117-117-117-117-117-117-117-117-11	5000

•

a	٨
١	_

STATE STATE WELL NUMBER		GRO SUR ELEV	UND FACE ATION	DATE	GROUND TO WATER	WATER SURFACE ELEV.		EVELS AT WELLS STATE WELL NUMBER	c	GROUMD O SURFACE ELEVATION		GROUND TO WATER	WATER SURFACE ELEV.	AGENC
-03 -03.A -03.A1	NORTH SMITH LOWER SMITH	COAST RIVER SMITH RIVER	H O HU RIYER PLAIN	HA HSA				F-03 F-03.A F-03.A1	NORTH SMITH LOWER SMITH	COAST HO RIVER HU SMITH RIVE RIVER PLAIS	R MA N MSA			
6N/01 N -02J(7.0	10/17/48 04/08/69 10/04/69 10/04/69 10/04/69 10/14/70 12/28/70 12/28/70 10/13/71 04/04/72 04/10/73 09/24/73 04/10/74 04/28/75 10/25/76 04/05/76 04/05/77 11/01/77 04/08/80 04/10/79 04/08/80 10/05/81	216.15.37.5.09.29 Y 8 0 2 7 3 5 5 6 7 5 7 7 7 2 0 126.77 1 2 1 2 1 6 6 7 7 7 7 2 0 1 2 1 6 6 7 7 7 7 7 2 0 1 2 1 6 6 7 7 7 7 7 7 2 0 1 2 1 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	105.8 105.9 106.9 109.3 109.3 109.3 110.0 109.3 101.3	\$000 \$050 \$050	16N/01W-17K0	ŧ. и	48.0	04/11/59 04/11/59 04/11/59 06/	+2:57:1000 3-4000 4-4 2:51:000 000 3-7:30 ()	######################################	5000
6M/01ы-17K(01 H	44	B.O	07/20/53 11/20/53 05/31/54 04/20/54 04/01/55 04/25/55 04/26/56 10/15/56 04/19/57	9225220380 193403	16.85.807.20	5000 5001				00/20/61 10/23/61 11/20/61 12/26/61 02/27/62 02/27/62 02/27/63	20 4 20 4 20 0(1) 20 0(1)		
				04/14/58 10/15/58 10/15/58 11/18/58 12/17/58 01/20/59 02/18/59 03/18/59	21.7 21.7 21.9 16.0 10.4	20.5 27.0 26.3 26.1 32.0 37.6	5000				07/25/62 08/22/62 09/20/62 10/24/62 11/27/62 12/18/62 01/22/63	19.8 20.8 26.6(1) 22.2 20.6 19.9 17.0	36 3 19 4 25 8 27 4 28 1 31 0	
				•									· · · · · · · · · · · · · · · · · · ·	

a	
Λ	ذ

	DATE 08/01/0	15			ı	IDIS GROUND	WATER L	EVELS AT WELLS					PAGI	E 8126
	STATE WELL NUMBER	c	GROUND O SURFACE ELEVATION	DATE	GROUND TO WATER	WATER SURFACE ELEV.	AGENCY	STATE WELL NUMBER	•	GROUND O SURFACE ELEVATIO	DATE N	GROUND TO WATER	WATER SURFACE ELEV.	AGENCY
	F F-03 F-03.A F-03.A1		COAST NO RIVER HU SMITH RIVE RIVER PLAIS					F-03 F-03.A F-03.A1	NORTH SMITH LOWER SMITH	COAST NO RIVER NU SMITH RIVE RIVER PLAI	R HA N HSA			
62	16M/01W-17K(91 H	48.0	02/19/63 03/20/63 04/24/63 05/21/63 06/19/63 07/11/63 09/19/63 10/24/63 11/217/63 01/16/64 02/26/64 05/13/64 05/13/64 05/13/64 05/13/64 01/17/65 02/17/65 02/17/65 02/17/65 05/19/65 05/19/65	16.4282180599645368929884902117781135788849021188111881118811188111990000000000000	31.68 2.05 1.4.65 7.4.21 8.1.22.4. 0.8.9.0.4.0	5000	16M/01W-17K0			10/13/71 04/04/72 10/11/72 04/10/73 04/17/74 04/26/73 10/23/76 04/26/79 10/23/76 04/26/79 04/26/79 04/26/79 04/26/79 04/26/79 04/26/79 04/26/79 04/26/83 10/20/83 10/20/83 10/20/83 03/22/84	21-32-1-6-627-7-55-35-7-0000-4-00-607-9-8-8-0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	***************************************	5050 5050 5050
				08/17/65 09/24/65 10/19/65 01/20/66 02/16/66 03/25/64 10/04/66 04/12/67 04/10/68 10/17/68 10/14/69 04/08/70 04/14/71	1019-69-55-227-57-203-821-102-1-102-1-102-1-102-1-103-	27.4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	\$050 \$000 \$050	17N/01W-02P(01 H	31.0	05/28/52 07/03/53 09/15/54 11/18/58 11/18/58 12/18/59 02/18/59 05/19/59 06/23/59 09/23/59 10/28/59 11/16/59	19.36.9.38.15.23.1.38.15.22.22.22.23.8	11.8 12.4 9.1 13.2 11.4 19.1 10.9 8.7 8.7 8.7	

WELL		O SURF ELEVA			TO WATER	ELEV.	AGENCY	NUMBER		O SURFACE ELEVATIO	M	TO WATER	SURFACE ELEV.	AGERL
-03 -03.A -03.A1	NORTH SMITH LOWER SMITH	COAST H RIVER H SMITH R RIVER P	u Iver Lain	HA HSA				F-07	SMI TH	COAST HO RIVER HU SMITH RIVE RIVER PLAI	R MA N MSA			
17N/01W-02P0			.0	01/27/60 02/17/60 02/17/60 03/30/60 05/26/60 05/26/60 05/21/60 05/26/60 05/26/60 05/26/60 10/25/60 11/25/60 11/26/61 11/26/61 11/26/61 11/26/61 11/26/61 11/26/61 11/26/61 11/26/61 11/26/61 11/26/61 11/26/61 11/26/61 11/26/63 15/26/63 15/26/63 15/26/63 15/26/63 15/26/63 15/26/63 15/26/63 15/26/63 15/26/63 15/26/63 15/26/63 15/26/63	18.3.1.4.7.(1) 18.3.1.4.7.3.0.1.4.8.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	7779636705063771962 0010259556565656900044800720355 2449351199889325614119886565656900044800720355	5000	17N/01W-02P0	11 #	31.0	12/17/43 101/14/44 102/24/44 103/18/44 105/13/44 107/13/44 107/13/44 107/13/44 107/13/44 107/13/44 107/13/44 107/13/44 107/13/45 107/14/77 107/14/77 1	18.9	124.4.2.8.4.0.4.	5050

		_	
ı			ï
0	7	7	
			١

9-61 89 1 71-

STATE STATE WELL NUMBER	GROUND O SURFACE ELEVATION	DATE I	GROUND TO WATER	WATER	MATER LE	VELS AT WELLS STATE WELL MUMBER		GROUND CO SURFACE ELEVATIO	DATE "	GROUND TO WATER	PAGE WATER SURFACE ELEV.	8126 AGENC
-03 SMITH -03.A LOWER	COAST HO RIVER HU SMITH RIVER RIVER PLAIN	HA HSA				F-03 F-03.A	SMITH LOWER	COAST HB RIVER HU SMITH RIVE RIVER PLAI	N HSA			
7N/01W-02P01 H		04/05/77 09/24/77 11/01/77 04/04/78 11/08/78	18.5 20.9 17.6 17.3	12.5 10.1 13.4 13.7	5050 5000 5050	17N/01W-03E01	1 H	14.0	11/01/77 04/04/78 11/08/78 04/10/79 11/06/79	10.9 10.5(4) 13.7 MH-0 MH-7	3.1 3.5 .3	5050
		04/10/79 11/06/79 04/08/80 09/30/80 03/26/81 10/15/81 10/19/82 03/31/83 10/20/83 10/20/83 10/20/84 03/23/84 03/23/84	18.5 20.9 17.3 NM-4 NM-9 16.9 18.3 16.9 22.9 22.0 17.5 22.9 22.0 19.8 14.1	9.0 15.1 11.2 16.9		17N/01W-15M02	2 H	21.0	07/25/53 08/05/53 08/05/53 08/15/53 08/15/53 08/25/53 08/05/53 08/15/53 08/18/53	13.60 13.60 13.60 13.60 14.65 14.66 15.60 15.60	8.1 7.4 7.1 6.8 6.5 6.2 6.2	5000 5001
7 n/01u-03 E01 H		07/08/53 06/01/53 08/25/55 08/25/55 04/05/66 10/04/67 04/10/66 04/08/67 04/08/69 04/08/69 04/08/70 04/14/71 04/14/71 04/14/71	11.2 44.65.45.50.00.07.67.09.15.7.09.1	77-48-48-68-7-108-48-0- 7-1-1-4-17-18-1-4-1-1-4-1-4	5000 5001 5050				10/19/45 10/19/45 04/05/46 10/05/46 10/05/46 10/06/46 10/17/46 04/06/70 10/13/71 04/10/73	15.0 17.3 14.7 14.0 14.0 15.0 17.0 15.4 15.4 15.4	13.43.8 14.400000 12.00000 17.04.6 14.40	5050
		10/11/72 04/10/73 04/10/73 04/24/73 04/28/75 10/13/75 04/06/76 10/25/76 04/05/77 09/23/77	13.0 9.9 13.4 9.7 13.1 9.8 10.8 10.8 11.5 M4-7	1.0 4.1 4.3 4.2 2.5 2.5	5000				09/24/73 04/17/74 11/10/74 04/28/75 04/06/76 10/25/76 04/05/77 11/01/77 04/04/78 11/08/78	16.6 16.6 16.7 16.7 10.8 11.4 9.6 15.2(1)	14.4 12.4 12.5 12.5 10.6 11.4 5.8	

(Ξ	١
•	ز	1

DATE 08/01/85	CROUMA		GROUND		WATER LE	EVELS AT WELLS		CD01913		COOLINA		8 129
STATE WELL NUMBER	CO SURFACE ELEVATION	DATE	TO WATER	WATER SURFACE ELEV.	AGENCY	STATE WELL MUMBER	CO E	GROUMD SURFACE LÉVATION	PATE	GROUND TO WATER	HATER SURFACE ELEV.	AGENCI
F-03 SMITI F-03.A LOWER	H COAST HB H RIVER HU R SMITH RIVER H RIVER PLAIN	HA HSA				F-03 F-03.A	MORTH COA SMITH RIV LOWER SMI SMITH RIV	ER HU TH RIVER	HA HSA			
17N/01W-15HO2 H		04/10/79 11/06/79 04/06/80 09/30/80 09/30/80 10/15/81 10/15/81 10/20/83 10/20/83 03/22/84 03/33/85	10.2 13.6 8.1 16.8 9.1 13.9 16.6 2.5 15.6 4.6	10.8 17.9 12.9 11.9 11.9 11.9 18.4 18.4 16.4	5050	17N/01W-2740	5 W		10/25/76 04/05/77 09/24/77 04/04/78 11/08/78 04/10/79 04/06/79 04/06/79 04/06/79 04/06/79 10/15/81 10/15/81	20. 2 18. 5 21. 4 20. 3 19. 0 14. 4 10. 5 19. 7 10. 5 19. 7	19.8 21.5 18.4 19.7 27.0 27.0 27.0 20.5 20.5 20.5	5050 5000 5050
17N/01W-20001 H	15.0	04/10/73 09/24/73 04/17/74 11/10/74 04/28/75	2.0 6.0 6.0 6.0	13.0 13.5 13.5 13.7	5050				97/30/43 10/30/43 10/30/43 10/33/43 10/33/43	10.3	30 m 30 m 31 m 31 m 32 m 32 m 32 m 32 m 32 m 32 m 32 m 32	
		04/06/76 10/25/76 04/25/76 04/25/77 11/01/77 04/06/78 04/10/79 11/06/79 04/30/80 03/25/81 10/19/82 03/30/83 10/20/83 03/22/84 03/33/85	7-5-7-3-6-3-6-5-6-5-6-6-6-0-0-0-0-0-0-0-0-0-0-0-0-0	13.777.457.53.69.057	3838	1 8 M/01W-27P0	3 H	15.0	04/10/73 09/24/73 04/25/73 04/25/73 10/13/73 10/23/74 04/03/77 04/03/77 04/04/78 11/04/79 04/00/80 03/26/81 10/15/81	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9.45 9.67 7.89 9.00 9.77 10.77 12.57 12.41	5050 5050 5050
17N/01W-27905 H		04/10/73 09/24/73 04/17/74 11/10/74 04/28/75 10/13/75 04/06/76	20.5 10.6 20.5 11.5 19.6 11.2	30.5 19.5 29.4 19.5 28.5 20.4 26.8	5050				03/31/83 10/20/83 10/20/83 03/22/84 10/29/84 03/13/85	1.4 8.5 8.5 4.4(1) 6.7 7.4	13.6 6.5 10.6 8.3 7.6	

DATE 08/01/85 STATE GROUND WELL CO SURFACE DATE NUMBER ELEVATION	WDIS GROUND WATER LEVELS AT WELLS GROUND: WATER TO SURFACE AGENCY WATER ELEV.	PAGE 8130
F NORTH COAST HB F-Q3 SMITH RIVER HU F-Q3.A1 SMITH RIVER HA F-Q3.A1 SMITH RIVER PLAIN HSA 18M/Q1M-35802 H 90.0 11/28/54 04/10/79 04/06/80 03/26/81 10/20/83 10/20/83 10/20/83 10/20/83 10/20/83 03/22/84 03/13/85	18.4 71.6 5050 29.5 60.5 22.6 67.4 39.4 50.6 26.6 63.4 33.0 57.0 18.5 71.5 29.6 60.4 29.6 60.4 29.6 70.4 33.9 56.1 24.7 65.3	

Appendix D Mineral Analysis of Ground Water

This Page Blank

APPENDIX D

- TIME Pacific Standard Time on a 24-hour clock
- TEMP Water temperature at time of sampling in degrees (°) Fahrenheit (F) and Celsius (C)
- PH Measure of acidity (<7) or alkalinity (>7) of water
- EC Electrical conductance in micromhos at 25°C
- TDS Gravimetric determination of total dissolved solids at 180°C
- SUM Total dissolved solids by summation of analyzed constituents
- TH Total hardness
- NCH Noncarbonate hardness any excess of total hardness over total alkalinity
- ASAR Adjusted sodium adsorption ratio
- PERCENT REACTANCE VALUE is determined by dividing the sum of the cations or anions in milliequivalents per liter into each constituent in milliequivalents per liter, arriving at a percentage. For a partial analysis, an approximate value is determined by multiplying the electrical conductance by 0.01 and using that as the cation or anion sum.

This Page Blank

	DATE TIME	SAMPLER LAB	TEMP	FIEU LABOR/ PH		MINE!	PAL CD!	NSTITU NA	K ENTS 1	N FILL	IGRAMS PER IFQUIVALEN ENT REACTA SO4	NCE V	R LITE		IGRAMS F Ids	PER I	TH NCH	SAR ASAR	REY
	* * * * *		* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * *	* * * * *	* * *		* * *	* * *	* * •	• • •	• • •	• • •
		F F-01		DPTH CE Inchuck															
	08/09/66	184/014-05601 H 0000 0000	•	٠.	171	 .				••	(1E D						
		184/01W-05K01 H	I																
	07/18/67 0845	5050 5050		7.4	181	10 •50 29	6.6 .54 31	15 65 38	.03	25 •50 27	16 • 37 • 20	.71 33	17.0 .27 15	•0		102 108	52 27	0. 9 0.6	
	07/11/68 1130	0000 5050	56.0F 13.3C		175														5
71	08/27/69 1520	0000 5050	63.0F 17.2C		163					440-451			<i>#</i>						\$
	36/24/70 1745	0006 5050	59 F 15 C		170			**											5
	08/11/71 1425	5050 5050	63 F 17 C		165 168					30 •60		23 •65	14.0 .23				47		s
	09/26/72 0840	5050 0000	56.0F 13.3C		182	950 VIII	***				***	~-	••						
	09/24/73 1425	5050 0000	59.0F	6.1	175			***				, 							
	09/04/74 1530	5050 5050	63.0F 17.20	5.9	185 178					~-	••	.50	21.0	~ ~			45		\$
	09/1G/75 1530	5050 5050	58 F 14 C		183 179	11 •55 35	4.7 .39 25	14 •61 39	.4 .01 1	29 •58 36	5.4 .11 7	.54	25.0 •40 25	•0		140 97	46 18	0.9	ŧ T

	DATE TIME	SAMPLER L48	TEND	FIEL LABORA PH	TORY EC	CA	RAL CO	NA	ĸ	IN MIL PER CACE		NTS PE ANCE V CL	R LITE ALUE ND3	R R TURB		TDS SUM	TH	SAR ASAR	REY
	* * * * *	F F-01	N.	* * * INTH CG INCHUCK	AST HR		* * *	* * *	* *	* * * *			• • • •	* *	* * * *	* * *	• • • •	• • •	• • •
	11/29/56	189/01V-05601 5050 5060	54.0F 12.2C	6•5	168	7.6 .38 24	7.1 .58 37	14 •61 39	.4	27 • 54 34	3.8 .08		12.0 .19 12	.04	.0 10.0	98 98	48 21	0.9 0.6	
	09/11/57	5050 5000	0 F 18 C	6+2	168	6.A •34 24	5.1 .42 29	15 •65 45	.8 .02 1	14 •28 19	4.8 •10 7		13.0 .21 15	•00	11.0	95 95	3 B 2 4	1.1	
	08/11/58 1505	5050 3334		7.5	155	6.0 .30 33	4.0 .33 36	6.5 .28 30	.01 1	8 •15 17	3.0 .06 6		32.0 .52 54		•0 6•0	104 70	32 24	0.5	τœ
72	08/27/59 1500	5050 5000		6.6	106	7 • 2 • 3 6 3 9	•7 •06 7	11 •48 52	.7 .02 2	15 •30 33	1.0 .02 2	20 •54 62	1.7 .03 3	•1	14.0	65	21	1.0 0.1	
	09/ /60	5050 5050		6.8	183	7.1 .25 23	5.7 .47 32	15 •65 44	•7 •02 1	10 •20 14	4.0 .08 5		19.0 .31 21	.03	10.0	99	41 31	1.0	
	28/30/61 1700	5050 5050		6.9	174	8.8 .44 28	5.1 .42 27	16 •70 44	.7 .02	10 •20 13	4.0 .08 5		21.0 •34 22	.05	10.0	104	43 33	1.1	
	09/17/62	5050 5050		7.4	186	8.8 •44 28	5.4 .44 28	16 •70 44	.8 .02	13 •26 16	5.4 •11 7		21.0 .34 22	•0	•0 9•6	107 106	44 31	1.0	
	07/10/63 1035	5050 5050		7.0	155	9.0 .45 27	3.3 .27 16	21 •91 55	.02	12 •24 16	1.0 .02 1	37 1.04 68	14.0 •23 15	•0	•2 9•4	108 102	36 24	1.5	
	08/26/64 1625	5050 5050		7.0	180			15 •65 42	**	11 •22		34 • 7 6	**				44		5
	07/37/65 1515	5050 0000		7.4	177			14 •61 43		11.22			12.0				40		\$

	DATE TIME	SAMPLER LA9 * * * * * * * * * * * *	TE4P	FIEL LAROPA PH		MINE	RAL CO	NSTITU AA * * *	ENTS K	IN MILI	LIGRAMS F LIEQUIVAL CENT REAC 3 SO4	ENTS (FR LITE VALUE		LTGRA4S F Sins + + + +	TOS SUM	LITER TH NCH * * • •	SAR ASAR	RE4
		F F-01		DRTH CO INCHUCK							•								
	08/10/77	18N/01V-05K01 5000	98.1F 14.5C		145 169	14 •70 41	4.6 .39 22	14 •61 36	.6 .02	25 •50 36	1.2	2 46	25.0		.1 15.0	106	54 29	0.8 0.6	s
	09/08/78 1215	5050 0000	59.0F 15.0C	6.0	180									-+					
	09/13/79 0955	5050 G000	72.0F 22.2C	6.1	185														
72	06/23/80 1200	5050 0000	58.0F 14.4C		184		-+				. 	. .							
	09/28/81 1055	5050 5050	60.0F 15.50		170 181	10 •50 32	5.0 .41 26	15 •65 41	.6 .02	.54	* . .	- 1		•1			45 19	1.0	\$
	08/05/82 1015	5050 0000		6.1	175					••		• •							
	09/17/85 1000	5050 0000	57 F 14 C	5.9	175			***			•								
	06/05/86 0930	5050 5050	57.0F 13.90		175 181	10 •50 31	6.0 .43 31	14 •61 38	,	30 .60			7 26.0 8 .42				50 20	0.9	s
	08/20/54	18N/01W-06902 5050	H 62 F 17 C		102	5.4 .27 29	3.5 .29 32	8.1 .35 38	.01	21 •42 45	5.° •1	2 .3		-14	.0 12.0	63	28 7	0.7 0.2	

	DATE TIMF	SAMPLER LA9	TEMP	FIEL LARORA PH		MINE F	MG	UTIT2N AN + + +	ENTS I	N WILL	IGRAMS PER TERUIVALEM ENT REACTA 504	TS PE	R LITE	R B	ETGRA#S F Sinz + + + +	PER I	TH NCH	SAR ASAR	RE4
		F F-01		DRTH CO ENCHUCK															
	08/10/77	2000 2000 18N/01A-02K01 H	58.1F 14.50		145 169	14 •70 41	4.5 .39 22	14 •61 36	.6 .02	25 •50 36	1.2 .02 1		25.0		.1 15.0	106	54 29	0.8 0.6	s
	09/08/78 1215	5050 0000	59.0F 15.0C	6.0	189														
	09/13/79 0955	5050 6000	72.0F 22.2C	6.1	185										7-				
1	06/23/80 1200	5050 0000	50.GF 14.4C	6.1	184					ger des	40-40				40 Mp.				
	09/28/81 1055	5050 5050	60.0F 15.50		170 161	19 •50 32	5.0 .41 25	15 .65 41	.6 .02 1	27 .54		17 .4P		•1			45 19	1.0 0.6	s
	08/05/62 1015	5050 0000		6.1	175						Min Min	***							
	09/17/85 1000	5050 0000	57 F 14 C	5.9	175							***							
	06/05/86 0 9 30	5050 5050	57.0F 13.9C		175 181	10 •50 31	6.0 .43 31	14 •61 38		30 .60			26.0				50 20	0.9	\$
	08/20/54	18N/01W-08902 H 5050 5000	62 F 17 C	6.6	102	5.4 .27 29	3.5 .29 32	8.1 .35 38	.01	21 •42 45	5.9 •12 13	12 • 34 37	•05	.14	.0 12.0	63	28 7	0.7 0.2	

DATE TIME	SAMPLER LAP	TEMP FIE Labor Ph	LD ATORY EC	MINE	PAL CO	NSTITU	IENTS	IN MILLI	GRAMS PEI	NTS PF	R LITE	R	LLIGRAMS				
* * * *	* * * * * * * * * *	* * * * * * *	* * *	C A + +	MG + + •	NA + + +	K *	CACU3	NT REACT	CL	ND3		F 5102 + + + +	TDS SUM + +	# # # # ##	SAR ASAR + + +	RE4
	F F-03 F-03.4 F-03.41 16N/01W-02001	NORTH C SMITH R LOWER S SMITH R	IVER H	U IVER HA													
07/10/63 1250		8.0	227	16 •80 34	10 •82 35	17 •74 31	.3 .01 0	103 2.06 99	1.0 .02	0MTIN 8.2 .23 .10	.0	•1	29.0	154 143	31 0	1.3	
39/01/64 1760	5050 5050	R • 4	205			14 •61 77		92 1.84	•	.31			-+		53		5
09/22/65 1630	5050 0300	8.1	223	M-sax		15 •65 28		94 1.88	***	11 • 31		~~	* -		64		\$
08/16/66 1515	5050 5050	7.0	194	12 •60 30	9.7 .80 40	14 •61 30	.5 .01 0	83 1.66 85	1.5 .63 2	8.7 .25 13	.01	•1		113 97	70 0	0.7 1.0	
07/17/67 1420	5050 5050	59.0F 15.00	\$11														
06/24/70 1500	5050 5050	62 F 6.5 17 C 7.0	155 150	9.8 .49 31	7.9 .65 41	9.4 •41 25	.6 .02	62 1.24 86	.0 .00 0	6.9 .19 13	1.4	•0	~ ~	95 73	57 0	0.5 0.6	Ŧ
03/12/71 0930	5050 5050	59 F 6.5 15 C 7.1	185 169					60 1.20		6.3 .23					63		S
09/25/72 1445	5050 5050	58.0F 14.4C	190				**		••								\$
09/23/73 1135	5ú56 0000	58.0F 5.7 14.4C	175														2
09/04/74 1310	5050 0000	59.0F 4.7 15.00	170			tan dys		**			~-						\$
69/10/75 1345	5050 000r	56.0F 6.E 13.3C	195														. 2

DATE TIME	SAMPLER LAB	TEPP		ELD RATORY	MINER	AL CO	NSTITU	ENTS		IGRAFS PER				LIGRAMS	PER	LITER		
			PH	EC	C.	MG	NA * * *	ĸ	PERC CACOS	CENT REACTA		VALUE ND3	TURB	\$ 102 \$ 4 4 4	TDS Sum	TH NCH * * * *	SAR	RE*
* * * * *			* * '		• • • •	* * *		* *		* * * * *	* *	* * *	• • •		• •			• • •
	F			COAST														
	F-03 F-03.A			RIVER	HIVER HA													
	F-03.A1				PLAIN HS													
	794/01A-05001 H									•	CONTI					72		
06/07/76 1400	5050 5050	56.0F 13.30		220 192					81 1.62			1.3				16		
1400	3030	130.00	,	.,,					2004		-,	***						S
				300	1.0	3.1	11	. 4	90	14	9.0	•1	.04	•1		90	0.5	
08/10/77		57.2F		200 201		.90	.49	.01	1.80	.29	. 25		•04	32.0	150	0	0.7	
	3000	1.100			39	39	21	0	77	12	11	. 0						
				210														
09/08/78 0910	5050 9080	58.0F		218														
0410	0000	2 10 10																
	1484014 05865 B																	
10/10/84	164/014-02003 H	58.0F	7.6	277	19	12	16	. 5	109	1.0	11	1.7	• C		167	97	0.7	
1430	5050	14.4C			.95	.99	.70	.01		•02		.03			127	0	1.1	T
					36	37	26	0	86	1	12	2 1						
09/17/85	5050	58 F	7.0	262														
0810	0000	14 C																
																		5
36/04/85	5050	58 F	7.0	260							-							
0805	0000	14 C																S
																		,
	16W/01W-03F01 H																	
06/03/96		58.0F				10	7.0	• 0		5.0	9.0		• 0		98 71	54 8	0.4	T
1325	5050	14.4C	7.8	143	25 16	.82 60	.30	•00	.92 56	•10 7	18	5 .13			1.1	9	0.4	•
					10	17.0	٤4		30	•	**	•						
	164/01#-03M07 H		_					_	2.2	3.4		2 12.0	•06	. 0		46	0.5	
06/12/62	5050 5050	59 F		131	4.7 .23	8.4 .67	7.3 .32	.3		2.6 .05		2 12.0	•00	•0	67	14	0.3	
	2020	14 6			19	55	26	i		4	21							

DATE TIME	SAMPLER LAB	TEMP FIELD LABORATORY	' MINE	RAL CO	NSTITE	IFNTS	MILL:	IGRAMS PER Ieoutvalen	LITE	R = D + T T	MJ)	LLIGPAMS	PER	LITEP		
		PH EC	CA	₩6	NA.	K	PERCI CACG3	ENT HEACTA SD4	FCE V	ALUF 403	. 6		105 50#	TH NCH	SAR ASAR	REM
						* *	* * * * * .	* * * * *	• • •	* * *	• • •	* * * *	* *	* * * *	* * *	* * *
	F F-03 F-03.4 F-03.41 16N/01W-03N08 H	NORTH CDAST SMITH RIVER LOVEP SMITH SMITH RIVER	HU RIVER +													
06/03/86	5050	59.0F 6.7 135		6.0	8.0	• 2	23	4.0	8.0	26.0	.0		82	40	0.6	
1505	5050	15.00 7.9 127	13	•66 56	.35 30	.01 1	•46 30	.08 7	•23 19				71	18	0.3	
	164/014-05L01 H	l														
09/27/53	5050		6.0	6.8	6.3	2.4	43	2.3	10					43	0.4	
	5000	6.7 126	.30 25	• 56	•27 23	•06	.86	•05	.28				61	0	0.4	
			25	47	23	5	71	4	23	2						
	16N/U1W-07F01 H															
09/28/53			3.5	14	15	1.1	105	5.2	2.5	3.7				112	0.6	
	5000	7.6: 282	1.10		.65	•03	2.10	•11	. 62	.06			146	8	1.0	
			38	39	22	1	73	4	21	5						
10/29/58	5050		20	17	13	1.5	116	7.0	16	.0		.0	214	117	0.5	E
1230	5050	7.7 290		1.40	.57	.04	2.32	•15	.51	•00		18.0	164	***	0.9	Ī
			33	47	19	1	78	5	17	0						-
09/14/59	5050		26	14	17	1.6	120	4.6	2.6	.1	. 1	•0		122	0.7	
1540	5000	8.1 304	1.30	1.15	.74	.04	2.40	.10	.07	•00	٠-	26.0	164	3	1.1	
			40	35	23	1	93	4	3	0						\$
09/ /60	5050		32	14	17	1.0	130	1.0	29	. 9	•05	.1		138	0.6	
	5056	8.2 347	1.60	1.15	.74	.03	2.60	.02	82	.01	•03	19.0	192	130	1.1	
			45	33	21	1	75	1	24	0						
08/30/61	505C		31	12	16	1.0	123	. 8	26	1.2	.04	•1		129	0.6	
1430	5050	P.1 308		.99	.70	.03	2.46	.02	.73	.02	•07	19.0	181	3 6 4	1.1	
		 -	47	33	21	1	76	ì	5.3	i				•		
09/17/62	5050		33	13	16	1.0	130	• 2	32	.6	. ^	•0	191	135	0.6	
1000	5050	8.3 329		1.07	.70	.03	2.60	.00	.90	.01	•0	20.0	194	133	1.1	
			4 &	31	50	i	74	ő	26	3				•	***	

DATE TIME	SAMPLER LAR		FTE LABOR Hq	ATORY	MINE	RAL CO	NSTITU	FNTS	14 #IL	LIGRAMS PE LIFOUIVALS CENT REACT	NTS PE	R LITE	ER	LIGRAMS F	PER TDS	LITER	SAR	RES
			, .,		CA	MG	NΔ	K			CL		TURR		SUM	MCH	ASAR	F 6 1
* * * * *		* * *	* * *	* * *		* * *		• •	• • • •	* * * * *	• • •		* * *	* * * *	* *		* * *	• • •
	F F • 03		ORTH C															
	F=03.A				LIVER H	A												
	F-03.41 164/01#-97H01 H	S			LAIN H													
06/14/62	5050	55 F			21	18	19	1.0	107	5.1	40	1.1	.05	•1		128	0.7	
	5050	13 C	7.9	336	1.05 31	1.45	.83 ?4	•03 1	2•14 63	•11	1.13	•02 1		27.0	196	20	1.2	
	16N/01W-03C04 H	1																
06/03/86			6.5	140	3.0	7.0	11	.6	23	4.0	18	14.0	. C		80	36	0.8	
1105		15.5C	7.9	139	.15	.58	.48	.02	.46	.08		.23			71	14	0.4	
		•			12	47	39	2	36	6	40	18						
	164/014-08005	ł																
06/03/86	5050	57.0F		195	4 . D	8.0	23	.6	36	10	15	32.0	• 0		121	43	1.5	
1140	5050	13.90	7.8	192			1.00	.02	•72	-21		•52			114	7	1.1	
					11	35	53	1	39	11	22	28						
	16M/01#-09H01 +	1																
08/27/53	5050				2.1	2.4	4.B	•1	12	2.1		4.9				15		
	5000		6.4	57		.20	.21	.00	. 24	.04	. 25				32	3	0.1	
					50	39	41		39	7	41	13						
	16M/D1W-09H04 H	i																
06/03/86				165		11	10	• 3	49	3.0		5.0	• 0		102	58	0.6	_
1230	5050	13.90	7.9	165		•93	. 44	•01	•98	•06		.08 5			91	9	0.6	T
					16	55	28	1	61	4	30	,						
	164/014-14402	4																
06/04/86	5050	61.0F	5.7	90		3.0		1.1	13	1.0		4.9	• C		48	18	0.9	
1350	5050	16.1C	7.9	83		. 25	.39	•03	• 26 37	•02		•08 11			41	5	0.0	
					13	3.5	51	4	31	3	. 49	**						
	164/014-15001	4																
08/27/53		53.0F			4.2	6.3	7.7	• 3	29	1.8		17.0			55 65	36 8	0.6	
	5000	11.70	6.4	117	•21 20	•52 •9	.33 21	.01 1	• 56 47	•04 3		•27 23		**	רפ	•	U a .5	
					γu	• •	- 1	-	71	3		2.5						
12/04/56	5050	50.0F	:		4.4	6.8	9.2	. 5	32	•0		19.0	• 6	•1	85		0.6	
	5000	10.00	6.6	153		.56	.40	.01	.64	.00		.31		17.0	8.5	7	2.4	
					18	47	34	1	53	0	21	56						
12/04/57	5050				5.?	8.5	C.4	.7	31	3.8	15	23.0	. 6	• 0	101	48	0.6	E
	5000		7.1	142	.25	.70	.41	.02	•62	.08		.37		19.0	100	17	0.4	
					10	50	2 ₩	1	44	. 6	24	26						

DATE BM1T	SAMPLER LAB	TEMP FIEL		MINE	RAL CO	45 7178	FNTS		IGRAMS PER IEQUIVALEN				LLIGRAMS	PER	LITER		
12	LAT.		FC					PERC	ENT REACTA	MCE 1	VALUE	8	£	TDS	TH	SAR	RE1
			* * *	CA + +	# # #			CACO3		CL.	4 4 4 4 483	TURP	• • • •	SUM +	NCH * * * *	ASAR	
	F F-03 F-03.A F+03.A1	NORTH CO SMITH RI LOWER SM SMITH RI	VER HU	VER H													
	164/014-15001			. ~ 10.	-					CYTI	NUED						
10/29/58 1420		56.0F 13.3C 7.4	129	5.0 .25 20	7.0 •58 •46	10 •44 35	.00	.30 64	5.0 -10 8	9.0 .25 20			19.0	90 85	41	0.7 0.5	
				20	711	34		04	ŭ	. 20	0						
10/ /59				3.8	5.6	6.1	.2	34	•6	7.2		.0	•0		33	0.5	
	5000	7.7	102	.19	•46	•35	.01	•68	-01	. 20			19.0	70	0	0.4	
				19	46	35	1	40	1	20	9						
09/ /60	5050			2.9	5.1	7.2	• 6	21	2.1	12	5.2	.04	•0		28	0.6	
1550	5050	7.4	104	.14	. 42	.31	.02	.42	.04	. 34	.08		16.0	64	7	0.2	
				16	47	35	2	48	5	39	9						
08/29/61	5050			5.4	9.4	9.2	. 4	36	1.6	14	18.0	.02	.0	-	52	0.6	
1615	5050	6.3	152	.27	.77	.40	•01	.72	.03		.29	**-	22.0	102	16	0.5	
-				19	53	28	1	50	2	27					_		
09/05/62	5050			3.6	5.8	7.1	. 4	33	2.0	8.0	4.8	. 0	.0	73	33	0.5	E
1045	5050	7.7	101	.18	48	-31	01	.66	.04		.08	••	19.0	70	Õ	0.3	•
		. •		16	4.9	32	1	65	4	23			• • • • •		_		
07/10/63	3 5050			3.2	2.7	5.5	. 4	15	2.4	11	• 0	. 0	•1	38	20	0.5	
1315	5050	6.7	61	.16	.24	•24	.01	•30	.05	•31		• •	12.0	46	5	0.0	1
* 4 * 2 *	3440			25	37	37	5	45	8	47					•	***	·
09/01/64	5050					7.7		34		13					46		
1645	5050	7.6	116			.33		.68		. 37							
						26											\$
07/07/65	5 50\$û					6.5		26		10	2.4				23		
1655	0000	7.8	84			. 2 A		.40		. 2 R	.04						
						38											S
28/29/66	6 5050			5.4	8.1	9.4	.6	34	2.3	15	11.6	.0		90	47	0.6	
30.0.700	5050	6.7	143	.27	.67	41	.02	.64	.05		18			72	13	0.5	
				20	49	30	1	51	4	32	14						

DATE TIME	SAMPLER LAR	TEMP	FIE LABOR PH	-	MINE	RAL CO	NST1TU	ENTS	IN MI	LLIGRAMS PE LLIEUUIVALE	NTS PE	R LITE	R	LIGRA4S				
			r 7	r t	CA	MG	NA	K	CACE	RCENT REACT 33 SU4	CL CL	NO3	B Turb	F S102	TOS	TH NCH	SAR Asar	RE4
* * * *	* * * * * * * * * *	* * * *	* * *	* * *	* * *	* * *	* * *	* *	* * * *	* * * * *	* * *	* * *	* *	* * * *	• •			• • •
	F F-03 F-03.4 F-03.41 16N/01W-15F02	\$4 L:0 \$4	IITH P															
06/04/86		57.0F	5.9	132	6.0	9.0	9.0	. 4	49	2.0	10	3.3	.0		79	52	0.5	
1450	5050	13.90	8.0	142	.30	.74	.39	.01	.98	• 04	. 25				69	3	0.5	
					21	51	27	1	73	3	21	4						
	164/014-16002	н																
04/30/53					4.9	6.3	13	. 5	38	2.0	19	3.3	.01	.0		38	0.9	
	5000		6.t	147	. 24	.52	.57	.01	.76	.04	.54	.05		16.0	88	Ö	0.7	
					18	39	43	1	55	3	39	4						
07/06/58	5050				8 • C	12	12	. 3	60	•0	25	2.0	.04	•0	130	70	۸.	•
01700756	5050		7.5	194	.40	.99	•52	.01	1.20		.71		-07	8.0	103	10	0.6	Ť
	3030		,	1.24	21	52	27	1	62		37	2		0.0	203	10	0.7	•
					-		_	_	•	_		_						
09/04/59					6.2	13	11	. 4	60	3.C	20	1.5	* C	• 0		70	0.6	
1400	5000		7.6	192	.31	.11	. 48	.01	1.20	•06	. 56	•02		2P.O	107	0	0.7	C
					24	12	53	1	65	3	30	1						\$
09/ /60	5050				6.2	13	10	. 6	72	3.3	16	1.6	.02	•0		76	0.5	
	5050		8.0	201	.41	1.07	. 44	.02	1.44	.07	. 45	.03	•••	26.0	122	2	0.6	
	·				21	55	23	1	72		. 23	2		••••		<u> </u>	•••	
							_							_				
08/29/61					6.9	13	tu	. 4	60	1.6	2.5		•03	•1		70	0.5	
1600	5050		7.5	189	.34	1.07	.44	.01	1.20	•03	•62			28.0	120	11	0.6	
					18	58	24	1	63	2	33	2						
09/05/62	5050				7.4	13	11	. 4	66	3.0	21	1.7	- 0	• 0	127	74	0.6	
1030	5050		0.1	195	.37	1.07	.48	.01	1.32		. 59			28.0	125	6	0.7	
					19	55	2.5	1	66		30	5						
. 3 464 454	16N/014-16D02							-	70	1 0	1.4	1 0	0.0			7.2		
12/04/56	5050 5000	52 F 11 C	5.8	182	8.0	13 1.U7	11 .48	.01	72 1.44			1.8	.00	.1 29.0	123	72	0.6	
	7000	11 (3.0	105	20	55	24	1	74	1	23	.03		L76U	143	2	V. /	
					z., U	,,	£ 7	•	1 7	•	£ 3							
09/11/57	5050				6.4	12	10	.6	57	1.9	20	1.9	.00	•0		65	0.5	
	5000		7.4	176	•32	. ç ç	.44	•02	1.14	.04	• 56	.03		28.0	115	. 9	0.6	
					3.8	56	- 25	1	64	2	32	2						

	DATE	SAMPLER		FIEL		4			-476 1		IGRAMS PER				LIGRAY	S PER I	LITER		
	FIME	LAB		LABORA Ph		CA	KAL GU Mg	NA NSTLIU	-7415 I		TEQUIVALE! ENT REACT: 504		ALUE	P TURB	F 5102	TDS SU#	TH WCH	SAR ASAR	RE4
			* * *	* * *	• • •	• • •		* * *	* * *		• • • • •	* * *	* * *	* *	* * *	* * * *	• • • •	* * *	* * *
		F F-03 F-03.A F-03.A1 16N/01b-17K01 H	SM Ln	ITH RI WER SM	AST HB VFR HU ITH RI VER PL	I Ver h						e.							
	10/29/58 1310	5050 5050		7.5	210	5.0 .25 12	11 •90 42	₽2 •96 45	•01 0	47 •44 45	6.0 •12 6	25 •71 34	21.0 .34 16	~~	14.0	147 132	56 11	1.3	
	09/18/59 1600	5050 5000		6.9	208	8.0 .40 18	14 1.15 53	14 •61 28	.5 .01 0	57 1.18 55	14 •29 13	23 •65 30	2•2 •04 2		32.0	143	76 19	0.7	
	09/01/64 1630	16N/01#-17K02 H 5050 5050		8.1	284		••	21 •91 34		54 1.00		24 •68					88		5
81	09/16/65 1330	5050 0000		7.0	282	6.3 .31 12	14 1.15 45	25 1.09 42	1.0 .03 1	.96 40	3.6 .07 3		36.0 .58 23	•00		161 145	74 24	1.3	
	08/16/66 1440	5050 5050		6.7	416	9.4 .47 13	22 1.51 51	29 1.26 35	.9 .02 1	41 •82 24	5.7 .12 4	39 1.10 32		•1		249 216	115 73	1.2	
	07/18/67 1045	5 2 5 0 5 0 5 0	69.0F 20.5C	7.6	399			31 1.35 39		39 .78	••	46 1 • 30	92.0 1.48	. 	**		104		\$
	07/10/68 1430	5050 5050	60 F 16 C	6.2 7.0	285 279	6.4	12 1.00 29	26 1.13 33		38 .76			50.0 .81				66 66	1.4	5
	09/24/80 1345	5050 5000	64.4F 18.0C	6.6	250	5.8 .29 14	14 1.15 55	14 61 29	1.0 .03 I	73 1.46 71	1.4 .03 1		9.3 .15 7	•03	24.0	126	72 0	0.7 0.9	
	10/29/58	164/014-17K03 H 5050 5000		7.5	210	5.0 .25 12	11 •05 42	22 •96 45	•3 •01 n	47 •94 45	6.0 •12 6	•71	21.0 .34 16		•1 14•0	132	56 11	1.3	

	DATE TIME	SAMPLER LAB	T∈MP	F I L 4 B T P H	RATORY	MINE	RAL CO	NSTITU	ENTS	IN MILL	IGRAMS PE IEQUIVALE ENT REACT	NTS PE	R LIT	EP	LIGRAY	S PER	LITER	SAR	REN
					•	CA	⊭G	KA	ĸ	CACDS	\$ 504	CL	403	B Turp		TDS SU4	NCH	ASAR	-
		• • • • • • • • • •	* * * *	* *	* * * •	* * * *	• • •	* * *	* *	* * * *	* * * * *	* * *	* * *	* * *	* * *	* * *	* * * *	* * *	* * *
		F F-03 F-03.A F-03.Al 16N/61W-17K04	S L S	MITH GWER	CDAST PRIVER PRI	HU RIVER H				,									
	06/03/86 0 9 50		57.0F 13.9C			4.0 .20 15	*•0 •66 50	10 •44 34	.01 1	29 •58 •6	6.0 .12	18 •51 40	.06	3.		80 67	43 14	0.4	
		164/01#-18F01	н																
	08/27/53	5050 5000	53.0F 11.7C		251	7.6 .38 16	14 1-15 49	19 •83 35	•4 •01 0	65 1•30 52	5.5 •11 4	36 1•02 41				126 125	76 12	0.9 1.2	
	12/09/56	5050 5000	52.0F 11.1C		292	6.8 .34 12	19 1.56 53	24 1.04 35	.01 0	95 1.90 63	1.9 .04 1	38 1.07 36	.00	•08	.0 25.0	172 172	97 0	1.1	
8	12/04/57	5650 5030		7.8	192	7.2 .36	20 1.64 52	27 1.17 37	.01 0	105 2.10 65	4.6 .10 3	36 1.02 32	.00	•02	24.0	162 162	101 0	1.2	E C
	09/25/58 1550	5050 5050		7.3	313	7.0 .35	18 1.48 48	29 1.26 41	.01 0	90 1.80 56	5.0 •10 3	44 1•24 38	6.0 •10 3		.3 21.0	219 184	94 2	1.3	
	04/30/53	16N/014-19J01 5050 5000	H 0 F		157	4.9 .24 17	8.9 .73 51	10 •44 31	.6 .02	39 •78 57	4.2 .09 7	14 • 39 29	.10		17.0	90 99	49 10	9.6 0.5	
	04/30/53	16N/01d-20A02 5050 5000	H 0 F 18 C		3 175	3.1 .15	7.1 .58 35	21 •91 55		37 •74 45	12 •25 15	19 • 54 33	.11	•06	.0 13.0	105 105	37 0	1.5	
	12/04/56	5050 5000	52.0F		159	3.6 .18 12	6.8 •56 39	16 •70 48		37 •74 50	4.B .10 7		19.0 •31 21	•0	.0 23.0	10P 10B	37 0	1.1	
	12/04/57	5050 5000	0 F 18 (7 257	4.4 •22 9	14 1•15 49	22 •96 41		38 •76 33	12 •25 11	19 •54 23		•05	•0 23•0	166 166	67 31	1.2	
	10/29/58 1145	5050 5050		7.4	0 174	6.0 .30 19	7.0 •58 35	16 •76 44		.72	6.0 .12 8	. 48	16.0 .26 16		•0 7•0	116	46 8	1.0	

	DATE TIME	SAMPLER LAB	1	РН	TORY EC	CA	MG	NA	ĸ	N MILLI PERCE CACD3		NIS PE ANCE V CL	R LITE ALUE ND3	R B Turp		TDS SUM	TH	SAR ASAR	RES
		F F=03 F=03.4 F=03.41	NO SM LO	RTH CO ITH RI WER SM		VER H	<u>.</u>	• • •	* * :			* * *	* * *	• •		* * *	• • •	•••	* * *
	09/18/59 1645	164/014-20402 H 5050 5000		6.9	204	5.6 .28 14	11 •90 44	19 •83 41	.9 1	39 •78 40	8.0	22 .42 .31	25.0		•0 25•0	140	58 20	1.1 1.0	
	U9/ /6D	5050 5050	٠	7.4	298	5.6 .28 11	15 1.23 49	22 •96 39	.02 1	37 •74 30	816 •16 7	26 • 73 • 30	49.0 .79 32	.04	.0 22.0	171	77 39	1.1 1.1	
	08/29/61 1500	5050 5050	•	6.4	197	4.3 .21 12	8.4 .69 39	2G •B7 49	.02	30 .60 33	9.9 •21 •12	• 56	27.0 .44 24		20.0	128	45 15	1.3	
3	07/30/62 1545	5050 5050	56.0F 13.3C	7.8	297	7.2 .36 13	16 1.32 47	25 1.09 39	•7 •02 1	.68 33	8.0 .17 6	. 95	49.0 •79 29	•0	22.0	180 184	84 40	1.2	
	09/01/64 1620	5050 5050		8.0	240			22 •96 43		36 •72		20 •56					63		s
	07/07/65 1635	5050 5050		7.8	269			26 1.13 43		32 •64	••		48.0 .77				75		S
	03/16/66	5050 0000			223														
	/ /61	16N/01W-20AD3 H 505D 505D		7.7	172	5.4 .27 16	9.1 .75 45	14 •61 37	•6 •02 1	48 •96 58	4.4 •09 5	. 42	12.0 •19 11	.07	.0 25.0	114	51 3	0.9	
	U4/3U/53	164/G14-20801 4 5050 5000	9 F 18 C		210	5.3 .26 13	13 1.07 51	17 •74 36	.4 .01 0	57 1•14 56	6.3 .13 6	•62	8.3 .13 6	•03	0.05	133 133	67 10	0.9	
	12/04/56	505C 500C	52.0F 11.1C	6.0	195	4.8 .24 13	11 .96 48	17 •74 39	•4 •91 1	59 1.13 63	5 • A • 1 2 ti		14.0 .23 12	•0	27.0	127 127	56 0	1.0 1.1	

DATE TIME	SAMPLER- LAB		FIEL LANDRA	ATDRY	MINE	RAL CO	NSTITU	ENTS	IN MILL		NTS PER LIT			LITER	SAR	824
			* * *		CA + +	#G * * *	NA + + +	* *	CACUS	\$34		B F TURB \$102 + * * * *	TDS SUM * * *	NCH	ASAR	RE4
	F F-03 F-03.A	SM LO	ITH RI	DAST HI EVER HI MITH P	U LVER H											
12/04/57	F+03.A1 16N/01W-20B01 5050 5000			EVER PI	3.2	13 1.07 51	19 •83 40	.8	59 1•18 56	12 •25 12	CONTINUED 16 14.0 .45 .23 21 11	•01 •0 27•0	140 140		1.1 1.2	
06/14/62	5050 5050			230	6.5 .32 15	13 1.07 49	19 •78 36	.02	70 1.40 62	4.9 •10 4	16 19.0 .45 .31 20 14	.06 .0 26.0	146	71	0.9 1.1	
04/30/53	164/014-20H01 5050 5000	H	6.5	172	4.4 •22 14	7.8 .64 42	15 •65 42	•7 •02	21 •42 27	3.5 .07	23 25.0 .65 .40 42 26	•09 •0 9•2	101	43 22	1.0 0.5	
12/04/56	5050 5000		6.7	181	4.8 .24 14	11 .90 52	13 •57 33	.01 1	48 • 96 54	3.8 .08	16 18.0 •45 •29 25 16	.01 .0 19.0	115	56 9	0.8	
12/04/57	5050 5000		7.5	250	6.4 .32 14	15 1.23 54	16 •70 31	.02	35 •70 31	6.7 .14 6	33 30.0 .93 .48 41 21	.0 .0	148	77 43	0.8	
10/29/58 1000	5050 5050		6.6	260	8.0 .40 16	17 1.40 55	17 •74 29	•7 •02	50 1.06 38	4.0 .08 3	37 33.0 1.04 .53 39 20	•0 •0 7•0	180 154	90 40	0.8	
09/18/59 1620	5050 5000		7.7	237	7.6 .38 17	15 1.23 54	.65 29	.02 1	57 1•14 50	10 •21 9	22 19.0 .62 .29 27 13	•0 •1 23•0	146	82 24	0.7	
11/29/60 1510	5050 5050	57.0F 13.9C	7.0	126	2.2 .11 11	5.2 .43 41	11 •48 46	.05 .6	16 •32 32	6.7 .14 14	14 9.5 .39 .15 39 15	10.0	69	27 11	0.9	
98/29/61 1530	5050 5050		7.2	167	5.0 .25 16	9.1 .75 47	13 •57 36	.02 1	37 •74 46	6.7 •14 9	17 15.0 .48 .24 30 15	.06 .1 17.0	106	50 13	0.8	
07/30/62 1510	5050 5050	56.0F 13.3C	7.5	211	6.0 .30 15	12 •99 51	15 •65 33	•9 •02 1	4R 476 47	7.6 .15 7	19 24.0 .54 .39 26 19	.0 .0	118	66 17	0.8 0.8	

	DATE TIME	SAMPLER LAB	TEMP	FIEI LABOR: PH	ATORY EC	CA	MG	N 4	K	PERCE CACO3	IGRAMS PER LECUIVALENT ENT FEACTAN SD4	IS PER ICE VAI CL	LITER LUE NO3 T	8 U# R :	LIGRAMS F Side	TOS SUA	TH	SAR ASAR * * *	PE4
		F F-03 F-03.A F-03.A1 16N/01#-20H01 H	SI L	HITH RI	DAST HB IVER HU MITH RI IVER PL	I VER HA						DNTINU	E D						
	07/10/63 1405	5050 5050		7.3	158	3.7 .18 12	#•0 •66 45	14 •61 41	1.0 .03 2	29 •58 41	6.6 •14 10	16 1 .45 31		•1		90 83	42 13	0.9 0.6	
	09/01/54 1610	5050 5050		7.5	197			14 •61 32	••	50 1.06		15 •42					64		S
	07/07/65 1630	5050 0000	•	7.9	177	**		14 •61 39		33 •66		17 1 .48					47		s
)О Л	08/16/66 1430	5050 0000			182							1	9.0 .31						s
	07/18/67 1025	5050 5050	62.0F 16.7C		164			15 •65 42		28 •56	 .	15 1 .42					44		\$
	06/24/70 1400	505 0 5050	58 F 14 C		158 155					30 .6C		16 1 .45					43		5
	08/11/71 1610	5050 0000	66 F 19 C		150						***		••				•		S
	09/25/72 1410	5050 0000	58.0F 14.4C		170							·							s
	09/24/73 1510	5050 5050	59.0F 15.0C		190 186	**						16 1 •45					59		s
	09/10/75 1615	5050 0000	58.QF	6.3	180														5
	66/07/76 1610	5050 6000	56.0F		160		***			~*									\$

												•							
DATE	SAMPLER LAB	TEMP	-	FLD RATURY	MINE	RAL CO	NSTITU	ENTS			AMS PE				LLIGRAM	IS PER	LTTER		
			РЧ	EC							REACT			₽ В		TDS	TH	SAR	REY
					CA	MC	NA	K		C 0 3	\$04	CL		TURB		SUM	NCH	ASAR	
* * * *	* * * * * * * * * * * *	* * *	* *	* * *		* * *	* * *	* *	* * *	* * *	* * *	* * 1	* * *	* * *	* * *	* * *	* * * :	* * * *	* * *
	-	· Mr	1074	COAST															
	F=03			RIVER															
	F-03.4				RIVER H	A													•
	F-03.A1				PLAIN H									,					
	16M/01W-20H01 H											CONTI				1.			
08/10/77		56.3F		170		- 12	15	•7	5.	_	8.7			•08			62		
	5000	13.5C		201	•25 13	.99 52	•65 34	•02	1.0	4	.18	• 56			20.0	113	10	0.9	_
					1.5	26	34	1				-							S
09/08/78	5050	62.0F	6.1	195	***				-	_					-				
1300	0000	16.7C																	
		•																	
09/13/79		61.0F	5.2	200					-	-									
1045	0000	16.1C																	
06/23/80	5050	64.0F	6.2	146	4.0	6.0	12	. 9	2	4		13		-			34	0.9	
1300	5050	17.8C				.49	.52	•02	. 4			.37				'	11		
	र्वे विकास				16	40	42	2											5
09/28/81		62.0F	6.2	195					-	_	-								
1230	0000	16.70																	S
08/05/82	5050		6.1	200					-	-									
0900	0000																		
																			\$
														,					
10/10/64		57.0F	6.8	142					-	-									
1340	0000	13.90																	s. S
09/17/85	5 5050	58.0F	6.3	190	5.0	12	13		5	0		18	8.8				62		
0750	5050	14.40	B . 2	192		.99	•57		1.0	U		•51	•14				12	0.7	
					14	55	31												S
104 402 404	F.A.S.A.	E7 AE	٠.	7 120	3.0	6.0	9.0	1.4	3	3	16	12	7.4	.0		32	32	0.7	
06/03/86 6735	5050 5050	57.0F				.49	•39	.04	. 4	_	.21	.34		• • •		63			T
91.93	7930	4 4 6 TL	17 0	- 467	14	46	36	4		1	19	30					•		
					~ .				•										

	DATE TIME	SAMPLER LAB	TEM	L	FIEL ABORA	TORY	* I M E	RAL CO	NSTITU	FNTS] N	MILLI	GRAMS PER	NTS PI	R LITE	MII ER	LLIGRAMS	PEP	LITER		
				• •	* *	EC * *	* * *	MA * *	NA + + +	`K + +		ACTIS	NT REACT: 504 + + + +	CL + + +		B Brut • • •	3172 * * * *	TDS SU4 + +	TH NCH * * * *	SAR ASAR + + +	PE1
		F F-03 F-03.A F-03.Al 16N/014-20H02 H		FOM 241	TH RI Er S4	AST HE VER HU ITH PI VER PL	IVER H			•											
	04/30/53		0	F C	6.5	185	7.6 .36 22	10 •82 48	11 •48 28	.02 1	1.	50 00 60	14 •29 17	.37 .22		•12	*0 7.6	95 95	60 10	0.6 0.6	
	09/18/59	164/01¥-20H04 H 5050 5000	ı	ı	6.9	208	8.0 .40 18	14 1.15 53	14 •61 28	.5 .01 0	1.	59 18 55	14 •29 13	23 •65 -30	2.2 .04 2	•0	.2 32.0	143	76 19	0.7	
	11/29/60	5050 5050	57 14		7.8	205	5.5 .27 14	14 1.15 59	12 •52 27	•5 •01 1	1.	57 14 60	4.6 •10 5	19 •54 28	8.3 .13 7	•05	•1 30•0	128	71 14	0.6 0.7	
87	/ /61	5050 5050			7.7	203	6.7 .33 16	15 1.23 60	11 •48 23	•5 •01 0	1.	60 20 56	3.3 .07 3	25 •71 34	5.5 .09	•03	0.95	132	78 18	0.5	
	07/30/62	5050 5000	59 15	F C	8.1	204	5.6 .28 13	16 1.32 63	11 •46 23	•6 •02 1	1.	62 24 59	5.0 -10 5	24 •68 32	4.8 .08 4	•0	28.0	132	78 18	0.5	
	04/30/53	16N/01W-20001 H 5050 5000	0	F C	6.8	232	6.0 .40 19	12 •99 46	17 •74 34	.e .02	1.	50 00 47	6.7 •14 7		13.0 •21 10		•2 19•0	135 135	69 20	0.9 1.0	
	12/04/56	5050 5000	49.0 9.4		6.7	239	8.4 .42 19	12 .09 45	18 •73 35	.7 .02	1.	52 04 45	6.7 .14		18.0 .29 13	-	0.05	145 145	71 19	0.9 1.0	
	12/05/57	5050 5000		F C	7.9	215	7.6 .36 19	11 •90 45	16 •70 35	1.0 .03	•	48 96 46	9.6 .20 10		11.0		.0 17.0	128 128	64 16	0.9	

DATE TIME	SAMPEFR L48	TEMP	-	TORY	MIME	PAL CO	NSTITU	FNTS	IN MILLI	GRAMS PER	ATS PE	R LIT	E R	LIGRAMS			C 4 D	BEA
			PH	EC	CA	#6	FA.	ĸ	C4003	NT REACT	CL * * *		R TURR		TDS SUM	TH NCH	SAR ASAR	
* * * *			* * *		* * *	* * *	* * *	* *	* * * * *		• • •					* * * *	* * *	• • •
	F F-03	SM	ITH P	OAST H	ษ	•												
	F-03.A F-03.Al			MITH P IVER P														
	194/014-50605 H					-												
06/03/86		58.0F		250	6.0	16	19	• 4	66	12		18.0	• 1		146 127	81 15	0.9	
0900	5050	14.40	8.3	235	.30 12	1.32 55	•75 32	.01 0	1.32 56	•25 11	21	.29 12			121	17	1.1	
	16N/014-21F01 H																	
06/04/86		58.0F		340	4.0	11	43	1.6	30	12 •25	73 2.06	5.1 .08	• 0		177 158	55 25	2.5 1.9	
1230	5050	14.4C	8.2	335	•20 7	•90 30	1.87 62	•04 1	•60 20	8	59	3			1.30	2,	1.4	
	16N/01W-21M61 H													_				
05/01/53		0 F			7.8	6.7	12	.7	46	3.4	17 -48		.04	.C 14.0	91 91	47 1	0.8 0.7	
	5000	18 C	7.3	149	•39 26	•55 37	•5? 35	•92 1	•92 61	•07 5	32			14.0	71		0.1	
39/20/54	5050	57.0F			7.3	8.2	12	. 4	46	4.5	21			. 3	103	52	0.7	
	5000	13.90	7.2	161	.36	.67	.52	.01	.92	.09	•59 36	•02 1		20.0	102	. 5	0.7	
					23	43	33	1	57	6	, 30	1						
12/04/56	5050	51.0F			5.6	11	13	. 3	64	1.0	16		.02		108	60 0	0.7	
	5000	10.5C	6.6	176	.28	•90 51	•57 32	•01	1•28 72	•02 1	•45 25	•02 1		22.0	109	U	0.0	
					16	21	31		12	•	2,5	•						
12/04/57	5050	0 F			4.8	11	14	• P	6.1	• 0	18		.02		110	56	0.8	
	5000	18 C	7.2	179	-24	.90	.61	•02	1.22	00.	• 51 29	.02		24.0	110	0	0.9	
	•				14	51	34	1	70	Ľ.	24	1						•
	164/01V-22J04 H	ı																
06/04/86	5050	56.0F		#3	2.0	4.0	9.0	. ?	18	1.0	9.0		• C		52 41	22		Ŧ
1305	5050	13.3C	8.2	85	.10 i2	•33 40	•39 47	10.	• *6 51	. 02 3	35	.09 11			71	7	0.2	's
	16M/01W-22Q01 H	ł												_				
05/26/53		0 F			4.6	2.3	11	- 8	16	3.7	19		•09		64 64	24 6		
	5000	10 C	6.8	109	•24 24	•24 24	-46 49	•02	•36 56	• 0 ē 8	•51 50	• 06 6		8.6	73.49	ь	7.2	

	DATE TIME	SAMPLER LAB	TEP		IELD GRATORY EC	C.A WINE	RAL CO	MSTITU Na	EMTS	IN MILLI	GRAMS PE EQUIVALE ENT REACT 504	NTS PE	R LIT		LIGRAMS F	TDS SUM	LITER Th NCH	SAR ASAR	REN
						_	_			* * * * *		CL .			* * * *				* * *
	•	F F-03 F-03.4 F-03.41 16N/01W-23DU1 H		SHITH LOWER	COAST H RIVER H SMITH R RIVER #	U IVER H													
	08/27/53	5050	59	F C 7.	1 72	3.4 .17 ?4	4.1 .34 47	4.5 .20 28	.01 1	26 •52 68	.01 1	7.? .20 .26	1.8			36	25 0	0.4	
	04/30/53	164/014-26D01 H 5050 5000		6.	6 154	4.0 .20 13	6.4 .53 35	18 •78 51	•2 •01 1	25 •50 32	1.6 .03 2	• 65	23.0 .37 ?4		•0 10•0	101	36 12	1.3	
89	10/20/59 1145	5050 5000		7.	6 299	18 •90 32	14 1.15 40	18 •78 27	.6 .02 1	66 1•32 48	.0 .00 0	.90	34.0 .55 20		24.0	190	101 37	0.8	
	99/ /60 1610	5050 5050		6.	5 275	6.8 .34 15	10 •82 37	24 1.04 47	.4 .01 0	26 •52 24	.01 0	.85	49.0 .79 36	•04	.0 13.0	149	56 32	1.4	С
	08/31/61 0830	5050 5050		7.	7 304	P.O •40 14	13 1.07 38	30 1.31 47	•00	44 •68 33	1.0 .02 1	3.18	35.0 .56 21		19.0	174	72 30	1.5	
	07/17/62 0900	5050 5050		7.	4 239	7.1 .35 16	10 •d? 38	22 •96 45	.00	31 •62 29	2.0 .04 2	1.10	23.0 .37 17		19.0	144 141	60 28	1.2 1.0	
	04/30/53	164/014-25E01 H 5050 5000		7.	2 255	31 1.55 58	6.7 •55 21		1.0 .03	104 2.08 90	3.3 .C7 3	14 •39 15	4.3 .07 3		12.0	147	105 1		
	06/14/62	164/01%-26805 4 5050 5050	55 13	р С 6.	3 77	2.7 •13 ?0	1.8 •15 23	8.0 .35 55	•2 •01 ?	16 •20 31	1.0 .02 3	• 31	7.3 .12 18	•04	•0 9•0	47	14	0. 9 0.2	

DATE TIME	SAMPLER LAB		FIF LARNE PH	ATORY	HING		NSTITU		TN H	ILLIGRAMS ILLIEQUIV FCENT RE	ALE	NTS PE	R LITE	R	LIGRA#S F	PER TDS	LITER TH	SAR	RE4
					CA	MG			CA	CO3 S		CL			2105	SUK	-	ASAR	
	• • • • • • • • • • •		• • •				• • •	* *			•	. • • •	• • • •	, , ,	, , , ,	* *	• • • •	* * *	
	F F-03 F-03.4 F-03.41 16N/01W-26M09 F	\$# L(\$#	ITH R																
06/02/86 1540		56.0F 13.3C		160 154	5.0 .25 17	8.0 •66 46	12 •52 35	.4 .01 1	.6 4	8 .	04 3	.54	11.0 .18 13	• 0		100 78	46 12	0.6	T
	16N/01W-26N01 H	1																	
04/30/53	5050 5000		8.1	?1 6	17 •85 37	5.5 .45 20		1.3 .03	8 1.7 7	0 .	07 3		3.9 .06 3	.03	.3 15.0	137	65	1.2	
	16N/01W-34801 H																		
06/02/86 1345		60.0F 15.5C		303 303	9.0 .45 16	9.0 .74 26	37 1.61 56	2.5 .06 2	7 1.4 5	6	0 08 3	46 1.30 46	.00 2.	• 6		192 151	60	2.4	T
	16N/02W-13E01 H	4																	
09/23/53			6.7	380	15 •75 22	14 1.15 34	34 1.48 43	1.0 .03	5 1.0 3	6 .	27 56 16	64 1.80 52	2.5 .04 1			189	95 42	1.5	
07/18/67 1230	5050 5050		7.6	528	59 2.94	11 .90	34	•01	16 3•2	е .	17 35 7		1.8 .03	•0		237 275	192 28	1.1	
					55	17	25	0	6				-						
07/10/68 1315	5050 5050	60 F 16 C		330 320	.60 20	9.7 .80 27	34 1.48 51	1.9 .05 2	1.0 3	4.	12 25 9	56 1.58 55	.00 00	• 0		149 157	70 18	1.8	
DB/28/69 1300	0000 5050	59.0F 15.0C		355					-	-									s
06/24/70 1430	5050 5050	58 F 14 C		280 265	11 •55 21	9.4 .77 29	30 1.31 49	1.4 .04 1	1.1			42 1.19 46	1.8	• 0		157 140		1.6	
08/11/71 1630	5050 6000	61 F 16 C		325	**				-	-									S
09/26/78 1040	2 5050 5050	58.0F	5.9 7.7	382 356		.10			1.2			58 1.54 52		•0		214 171		1.7 2.0	T

3

	DATE TIME	SAMPLER LAR	TEMP	FIE LABOR	ATORY	MINE	RAL CT	UTITZME	IFNTS 1	(N MIL	LIGRAMS P LICOUIVAL	ENTS P	ER LIT	ER	LIGPANS				
	* * * * 1				+ + •	C A +	NG	NA + +	K	CACD	CENT REAC 3 SO4			TURB	* * * * \$105	TOS SUM + +	TH NCH + + + +	SAP ASAR + + +	RE4
		F F-03 F-03.4 F-u3.41 16N/02W-13F01 h	\$! Lt S!		IVER H							CGNTI	NUED						
	09/24/73 1530	5050 5050	65.0F 18.3C		560 563	50 2.56 44	18 1.48 26	38 1.65 29	.02 0	161 3.62 64		55 1•55 27		• 0		302 293	198 10	1.2	
	09/04/74 1630	5050 0000	71.0F 21.6C	5.6	540								**						
-	09/10/75 1650	5 050 0000	60.0F 15.5C	6.7	445						~~	***			**				
91	36/07/76 1640	5050 0000	56.0F 13.3C	6.3	430			**		••				# =					
	08/10/77	5000 5000	57.2F 14.0C		400 466	30 1.50 34	18 1.48 34	31 1.35 31	1.0	110 2.20 51	19 •40 9	1.72	•1 •00 0	•05	22.0	248	150 39	1.1	
	09/08/78 1315	5050 0000	59.0F 14.4C	6•5	455					***									
	09/13/79 1150	5050 0000	61.0F 16.1C	6.3	420						••	· •••	-						
	06/23/60 1245	5050 0000	61.0F 16.1C	6.3	400	***			· ·	**									
	09/28/81 1260	5050 5050	60.0F 15.5C		329 329	13 •65 21	13 1.07 35	30 1.31 43	.6 .0? 1	49 •98		1.33		***			86 37	1.4	S
	08/04/82 0915	5050 0000		6.3	320							-+							
	10/10/84	5050 0000	59.0F 15.0C		330	*-		**											

	DATE	SAMPLER LAB		F1FI LABOR: PH	YPUTA	MINER CA	AL CE	NSTTTU NA	ENTS I	IN FILLS	GRAMS PER EQUIVALER NT REACT: SO4	NTS PE	R LITE	MIŁ P E TURP	LIGRA4S F	FER L TDS SUM	ITER Th NCH	SAR ASAR	REY
						* * *					* * * *			+ +	* * * 1	; * * *	* * *	* * *	* * *
		F F-03 F-03.A F-03.A1 164/024-13E01 H	\$# L0 54	ITH R								RITHOS	ilie V						
	09/17/85 0735	5050 0000		6.2	322														
	06/03/86 3715	5050 5050	57.0F 13.9C		265 265	8.0 .40 18	6.0 .66 30	26 1.13 52		50 1.00		42 1.18					53 3	1.6	5
	09/15/58 1510	17N/01w-02G01 H 5050 5050		7.5	109	2.0 .10	8.0 .66 65	6.0 .26 25	•0	16 •32 46	5.0 .10 14	9.0 .25 36	2.0	.08	10.0	64 52	40 22	0.4	C S
83	08/27/59 1330	5050 5000		7.5	110	4.6 •23 21	6.9 .57 51	6.9 .30 27	.01 1	40 •80 74	1.4 .03 3	7.1 .20 19	3.0 .05 5	•€	18.0	72 72	40 0	0.5 0.4	
	09/ /60	5050 5050		7.5	115	3.8 .19 17	7.4 .61 56	6.5 .28 26	.3 .01 1	36 •76 71	2.1 .04 4	7.5 .21 20	3.5 .06 6	.04	20.0	74	40	0.4 0.3	
	09/30/61 1655	5050 5050		6•9	107	4.8 •24 22	6.3 .52 49	6.8 •30 28	.01 1	39 •78 72	1.2 .02 2	7.B .22 20	4.2 .07 6	•03	•1 18•0	73	38 0	0.5 0.4	
)9/12/63 1400	5050 5050		7.4	116	4.e .24 23	6.3 .52 5.	6.4 •28 27	.4 .01 1	36 •72 73	•6 •01 1	7.8 .22 22	2.6 .04 4	•0	**	74 50	38 2	0.5	· T
	08/28/64 1705	5050 5056		7.8	110			6.8 .30 ?7	10° 100	38 •76	•• .	7.0					40		5
	06/24/65 1510	5050 0000		7.9	112	err tir		5.7 .25 24		34 • 69		P.4					40		s
	08/05/65	0000			118					40-40									

	DATE	SAMPLER LAB		FIEL LABORA		MINER	AL CO	NSTITU	ENTS	IIM NI	LLIGRA					LIGPAMS	PER	LITER	-	
	* * * *			PH * * *	EC * * *	CA * * *	46 * * *	NA + * *	К * *	CAC	RCENT	REACT SQ4	ANCE V	VALUE NO3	8 TURP * * *		TOS SUM * *	TH NCH + + + +	54R ASAR * * *	RE4 + +
		F F-03 F-03.4 F-03.41 174/014-02601 F	SM L	ITH RI	DAST HR IVÉR HU MITH RI IVER PL	VER HA							CONTI	WIED.				•	÷	
	07/17/67 1650		55.5F 13.0C	7.5	108	***		6•2 •27 26		er- 100	•		7.4 .21		•0			39		\$
	07/11/68 0930	0000 5050	55.0F 12.8C	6.5	115		See 400	US- dia		the em		.). m= em=		~ •		700 Mars				
	03/28/69 1205	0000 5050	58.0F 14.4C	6.1	115		~~			-	`	20 50		es =	. 	****				
93	06/07/76 1550	5050 5050	55.0F 12.8C		122 121	5.5 .27 22	7.5 .64 52	6.8 .30 25	.2 .01 1	37 •74 63		1.8 .04 3	•21	12.0 .19 16	• 0	40 Tab	94 64	46 9	0.4	E T
	08/10/77	5000 5000	54.5F 12.5C		101 142	5.7 .28 22	6.3 .68 54	7.0 .30 24	.01	39 •78 57		1.5	.24	19.9 .32 23	•01	19.0	93	48 9	0.4	X
٠.	09/13/79 1015	5050 5050	57.0F 13.9C		165 152	6.0 .30	9•0 •74			37 •74				20.0		***		52 15		
	36/23/80 1215	5050 0000	57.0F 13.9C	6•2	168									·	,					S
	08/05/82 1040	5050 0000	-	6.3	160				Con 100	allip den			∞	-	*** ***				,,	s
	06/05/86 0835	5050 5050	55.0F 12.80		195 193	9.0 •45 25	12 .99 55	8.0 .35 19	.01 .01	36 •72 41		5.0 .10 6	• 31	39.0 .61 35	• 0	400 KM	116 105	72 36	0.4 0.4	

	DATE TIME	SAMPLER LAR	TEM	LA	800	LD ATORY		NF R	AL CO	INSTITU	IENTS	IN	MILLIGR MILLIEO	JIVALE	MTS P	ER LITE	411 R	LIGRAMS	PFR L	.ITEP		
	, * * *	* * * * * * * * * * * *	* •	* *	* *	€ €	C A		MG * * *	NA +	K •	• •	PEPCENT ACO3 * * * *	REACT SD4	ANCE CL		# #	F * * *	TOS SU# * * *	TH NCH * * *	SAR ASAR + + +	RE4
		F F-03 F+03.A F-03.A1 174/01W-02602 H		SMIT LOWE	H R]																	
	03/19/87					164		.		7.7 .33				•00		40.0 •65			128			£
	10/14/86	17N/01H-02603 H 2894 3334				140	-	-		7.0 .30				1.0		46.0 .74	**		87			
94	06/03/86	17M/01W-02K01 H 2864 3334				156	-	-		5.9 .26				2.0		29.0 .47			97			
	06/03/86	17N/01W-02K02 H 2894 3334				226	_	••		5.3 .23			••• ·	4.0 .08		63.0 1.02			141			
	06/02/86	17N/01W-02K03 H 2894 3334				124	-	-		6.4 .28				.00		27.0			77			
	08/27/53	17N/014-02P01 H 5050 5000		5	. 8	130	4. •2	1	13 1.07 74	3.4 .15 10	•3 •01 1	ì.	64 28 85	1.5		1.9			68	64 0	0.2	
	06/13/62		56 13		• 5	223	6. .3 1	2. :	20 1.64 75	4.6 .21 10	.02 1	1.	52 U4 49	.04	. 21	52.0 .84 39	•05	.0 20.0	145	97 46	0.2	

	DATE Time	SAMPLER Lab	TEMP	LABO	ELD RATORY EC	MINE	PAL CO	MSTITU	ENTS	IN MILLI	GRAMS PER EQUIVALENT PT REACTA	TS PE	R LITE	R	LIGRA4				
		· · · · · · · · · · ·	* * *			CA * * *	#G	NA + + +	. ¥ +	CACDB		CL	403	B TURB + +		TDS SUM * * *	TH NCH * * * *	SAR ASAR	# # #
		F F-03 F-03.4 F-03.41 17N/31V-03E03 H	\$! L! S!	MITH S	COAST HB RIVER HU SMITH RI RIVER PL	VER H													
	07/17/67 1550	5050 5050	57.0F 13.9C		358	9.4 .47 12	36 2.96 77	25. 5.0	7.9 .20 5	161 3.22 85	7.7 .16	8.7 .25 7	8.5 .14 4	•0		169 180	172 11	0.2	
	06/25/70 1015	0000 5050	56 F 14 C		340														١
	08/12/71 0950	5050 5050	66 F 19 C		315 335					155 3.16		7.2 .20			***		166		
95	09/25/72 0935	5050 0000	56.0F 13.3C		325														\$
	09/24/73 1220	5050 0000	62.0F 16.7C		345		**					***							
	09/04/74 1440	5050 5050	60.0F 15.5C		305 291							5.0 .14	5.2 .08				137		S .
	09/10/75 1430	5050 5064	57.0F 13.9C		295 293	10 •50 16	29 2.38 75	3.9 •17 5	4.3 .11 3	140 2+30 88	7.0 .15 5	4.6	5.7 .09 3	•0	 	167 148	144	0.1	·
	06/07/76 1440	5050 0000	56.0F 13.3C		329										**				S
	38/10/77	5000 5000	55.4F 13.0C		270 331	13 .65 16	34 2.80 75	4.0 .17 5		160 3.20	7.7 .16	6.0 .17		•02	.0 34.0	198	170 13	0.1	3
	09/38/78 1000	5050 0000	56.0F 13.30		320									~ ~					
	09/13/79 0910	505C 0000	64.0F 17.8C		355										 				

	DATE TIME	SAMPLER LAB		FIEL LANDPA PH	TORY	HINE CA	RAL CO	NSTITU Na	ENTS]	IN MILL	IGRAMS PER IFQUIVALEN ENT PEACTAI SO4	TS PF	B LITE	R P	LIGRAMS F Sto2		LITER TH NCH	SAR ASAR	RF4
	* * * * *	F F-03 c-03.4 F-03.41	10 24:	RTH CO ITH RI WER SM	AST HB	VER H	Á	* * *	* * 1						* * * *			* * *	* * *
	06/23/80	17N/01#-03E01 H	•		344	10	35	4.0	2.4	158		CHTIN 7.0					169	0.1	
	1035	5050	15.5C			.50 14	2.88 80	•17	90.	3.15		. 20					11	0.3	5
	09/28/81 1010	5050 0000	61.0F 16.1C	6.9	345		**												s
	08/04/82 0945	5050 0000	•	7.0	350					-+	- 								S
		17N/01W-04J01 H									_				_				
96	11/29/56	5050 5000	55 F 13 C	7.3	244	5.6 .28 10	28 2.30 83	4.2 .18 6	.3 .01 0	124 2.49 90	1.9 .04 1	7.0 .20 7	2.1 .03 1	.01	•0 36•0	159	128	0.2	
	09/12/57	5050 5000		8.1	242	7.2 .36 14	25 2.06 78	4.9 .21 8	.5 .01 0	119 2•38 89	•0 •00 0		1.4 .02 1	•00	•0 34•0	154	121	0.2	
	07/18/58	5 050 5050		7.6	256	4.0 .20 7	28 2•30 83	6.0 .26	.3 .01 0	123 2.46 87	4.0 .08 3	9.0 .25 9	2.0 .03 1		27.0	154	124	0.2 0.4	
	09/03/59	5050 5000		6.1	251	6.0 .30 11	27 2.22 80	5.5 .24	.3 .01	127 2.54 92	2.0 .04 1		1.4	•0	.0 35.0	159	126 0	0.2	
	09/14/60	5050 5050		8.2	260	4.6 .23 P	26 2•30 84	4.8 .21 8	.4 .01 0	123 2.46 70	2.3 .05 2	.20	1.9 .03 1	.03	.0 33.0	156	129	0.2	
	08/30/61	5050 5050		7.7	253	6.5 .32 12	27 2.22 80	4.8 •21 8	.01 0	122 2.44 89	.02		2.2 .04 1	.04	•1 34•0	157	127 5	0.2	
	09/07/62	5050 5000		6.2	240	6.0 •30 11	26 2.14 81	4.7 .20 8	.4 .91 6	124 2.49 89	1.4 .03 1		2.0 .03	• C	•0 34•0	158	123 0	0.2	2

	DATE TIME	SAMPLER LAB	TEMP	FIEL LABORA PH		MINE CA	RAL CO	NA	K	IN MILL	IGRAMS PE IEQUIVALE ENT REACT S T4	NTS P ANCE CL	ER LIT	*IL EP B TURB * * *		PER TDS SUM	LITER TH NCH	SAR ASAR	RE4
		F F-03 F-03.4 F-03.41 17N/01W-04J01 H	S L																
	09/13/63 1300	5050 5050		7.5	263	5.9 .29 10	28 2•30 82	4.4 •19 7	•5 •01 0	120 2•40 89	1.6 .03 1		1.3	•1		142 123	128 10	0.2	
	08/18/64 1612	5050 5050		8.2	244			4.7 .20 7		119 2.30		7.4 .21					126		\$
	08/26/65 1620	5050 0000		7.6	251			4.2 .16 7		116 2.32		7•7 •22			·		122		S
0.7	08/08/66	0000			270					. 									
	07/11/66 1230		55 F 13 C	7•3 6•1	280 281	4.8 .24 6	30 2.47 95	3.6 .17 6	1.1 .03	131 2.62 69	4.3 .09	8.0 .23		•0		136 134	134 5	0.1	
,	08/28/69 1000		57.0F 13.9C	7.1	285						-+			**					
	09/04/74 1420		64.0F 17.8C			7.5 .37	34 2.80 83	4.4 .19 6	.02 1	151 3.02 90	4.3 .09 3	5.3 •15 4		• • 0		172 153	158 8	0.2	
	09/10/75 1420		50.0F 14.4C	7.0	305					***			***						S
	39/10/77		55.4F 13.00			7.9 .39 12	34 2,60 83	4.3 •14 6	.01	166 3.20	5.0 .10	6.7		•02	.0 32.0	186	16 0 0	0.1	X S
	09/24/80 1230		60.8F 16.0C	7.3	345	7.1 .35	35 2.88 84	4.4 •19 5	•6 •02 1	160 3.20 90	2.3 .05	7•1 •20 6	5.8 .09	•02	•1 32•0	190	160	0.2	-

9

			X 200 4 4 4 4								•	t (1 .4	th. ' a	4-			8 4 1 A	
	DATE TIME	SAMPLER LAB		FIFLD ABORATORY	WINE	PAL CO	wstitu	ENTS	IN MILL		ALENT	TS PE	R LIT		LIGRA	S PER	LITER		
	ili Stalina sa s			PH ₄ÉC	CA	NG	NA .	K.	PERC	ENT RE	ACTAN	CF A	NO3		F SIO2	TDS	TH PCH	SAR	REY
					, , , ,		* * *	~ ×											
		F F-03 F-03.A F-03.Al	SMI LOI SMI	RTH COAST I LTH RIVER I WER SMITH I LTH RIVER I	HU RIVER H														
	08/27/53	17N/01W-04L01	.н 59 F	A	6.4	42	8.5	•1	187		. 5	12	2.0				189	0.3	
		5000	7 7 7	7.1 363	•32 8	3.45 83	•37		3.74 91		0	• 34 8				184	2	0.6	
	06/13/62	5050 5050	58 F 14 C	7.6 465	11 • 55 10	53 4.36 83	8.0 .35	.01 0	237 4.74 92		02	14 •39 8	1.5 .02 0	•04	33.0	264	245	0.2	
		174/014-04102			A .		4.5	•											
	08/27/53	5050 5000	67 F	7.0 352	6.0 •30	43 3.54 86	7.0 .30	•00	189 3.78 93	•	.7	9.5 ,27 7	.01			180	192	0.2	440
		turing a second of the second				00	•					•	•					**	
98		17N/01W-04LC3	65.0F	7.3 520	6.0	58	8.0	.6	506		14	28	.5	•0		253	254	0.2	
	06/04/86 1200	5050 5050		£.3~463		4.77	.35	.02	4.12		.29	. 79	.01	•0		239	48	0.5	
					6	88	6	. ,0	.79		,6	15	. 0			•	4		S
		17M/01W-09A01	н .											· -					*
	09/03/59	5050			6.0	27	5.5	• 3	127		2.0		1.4	.0	- 2-		126	0.2	
	1300	5000		e.1 251	•30 11	2.22	•24	01	2.54		.04 1	•17 6	1		35.0	159	¢0	0.4	
	09/14/60	5050			4.6	29	4.8	4	123		2.3	7,.1		.03	.0	- 3 -	129	0.2	
	1530	5050		8.2 260	• 23 8	2.30 64	8	•01 0	2.46 90		• 05 2	·20	.03	• •	33-0	156	i ys ∳ Literatus	0.3	
	08/30/61	5050		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	6.5	27	4.8	• 4	122		.8		2.2	.04	•1		127	0.2	ي المالي
	1620	5050		7.7 250	12	2.22	.21	.01	2.44 E9		.02 1	.23	.04		34.0	157	5	0.3	
	09/07/62	5050			6.0	\$6	4.7	. 4	124		1.4		2.0	•0		138	123	0.2	
	1530	5050		8.2 240	.30 11	2.14 A1	• 20	•01 ១	2.48 89	•	1	ુ• 26 9	•03 1		34.0	158	0	0.3	\$
					- 11		e				•	7	-						

DATE TIME	SAMPLER LAB	L.	FIELD ARDRATORY PH EC	CA	MG	NA	K	IN MIL PEP CACD	LIGRAMS PI LIEOUIVALI CENT REACT 3 SD4	NTS PI FANCE ! CL	R LITE	P B	LIGRA4S F SID2 + + + +	PER TDS SUM + +	TH		RE1
	F F-03 F-03.4 F-03.41 17N/01W-09B01	SMIT LOW SMIT	TH COAST P TH RIVER P ER SMITH P TH RIVER P	HU RIVER H					-	***							
07/18/58 1410	5050 5050		7.6 256	4.0 .20 7			•3 •01 0	123 2•46 87	4.0 .08	9.0 .25 9	2.0 .03 1		27.0	194 154	124	0.2	E T
06/04/86 1050	17N/01W-09G01 5050 5050	56.0F 1 13.3C	7.0 152 3.3 153	4.0 .20 13	13 1.07 67	6.0 .26 16		51 1.02 70	4.0 .08 5	9.0 .25 17	6.7 •11 8	•0		90 76	64 13	0.3 0.3	**\ \$
06/04/86 1055	17N/014-09K02 1 5050 5050	59.0F 6	0.9 192 0.2 178	3.0 •15	15 1.23 69	5.0 •22 12	6.5 .17 10	52 1.04 62	4.0 .08	.28	18.0 .29 17	•0		108	69 17	0.3 0.3	
8 397 760	17N/01W-11A02 H 5050 5000	0 F	7.4 117	1.7 .08 7	10 •92 76		.00	33 •66 62	•5 •61 1	. 14	16.0 .26 24		.0	78 78	45 12	0.3	
07/30/53	174/014-11F01 5050 5000	4 57 F 14 C 7	7.1 257	7.7 .38 13	29 2•30 82	3.1 .13 5	•3 •01 0	123 2•46		5.8 .16		. .			134 11		
08/27/53	17N/01W-13G01 5050 5000		7.2 139	5.5 .27 19	13 1.07 74	2.3 .10 7	.01	65 1.30 67	1.7 .04 3	.14	1.2		•••	68	67 2	0.1 0.1	
09/28/53	17N/01W-14C01 5G50 5G00		.0 324	21 1.05 30	19 1.56 44	20 • F7 25	2.1 .05	152 3.C4 86	10 •21 6	. 24	3.3 .05	 		175	130		
10/29/58 1500	5050 5050	3. 6	370	16 •90 23	11 090 23	47 2 • 04 52	2.b .07	153 3.06 75	13 •27 7	27 • 76 19	.00	••	.4 16.0	284 227	91 0	2.1	E T S
08/14/59 0955	5050 5000	, ,	1.4 367	21 1.(5 42	15 1.23 43	.17	3.3 .08 3	165 3.30 62	.31 .81	14 •39 10	.7 .01 0		0.05	192	113		S

	DATE	SAMPLER LAR	_	FIELD AROPATORY PH FC	MINE	RAL CO	UTITZM	ENTS	IN MIL	LIGRAMS P Lisquival Cent Reac	ENTS P	ER LITE		LIGRAMS F	PER L	ITER TH	SAR	REY
					CA.	MG * * *	4 4 4	κ * *	CACD	2 SD4 * * * *		ND3	TURP	\$102	SUM	NCH	ASAR	
١.			* * * * *							* * * * *		, , , ,	-		***			* * *
		F-03	SMI	TH COAST H	IU												·	*
		F=03.A F=03.A1		ER SMITH R				*	and the second		•							
		17N/01W-14C01 H	3112		ENAM "	J.			i.		CONTI	NUED		4				
	09/15/60 1500	5050 5050		A.3 384	.95 .24	14 1.15 29	41 1.78 45	2.6 .07 2	161 3.22 82	14 • 29 7	.42	.01	•23	20.0	223	105	1.7 3.0	
		en jakor			٠,٠			•			-	•				100		
	/ /61	5050 5050		8.1 364	22 1.10 28	1.32 33	35 1.52 38	2.5 .06	160 3.20 81	14 • 29 7	. 42	.02	.18	22.0	224	119	2.5	
			•			Α,		-	. >									
	1500	5050 5050		8.3 367	25 1.25 32	13 1.07 27	35 1•52 39	2.9 .07 2	174 3.48 83	13 •27 6	. 42	.01		23.0	232	115	2.6	s
=								• •										
5	07/10/63 1225	5050 5050		8.2 251	27 1.35 48	9•0 •74 26	16 •70 25	.04	117 2.34 83	9.1 .19	. 26	.04		24.0	154 168	105 0	1.1	
										•								
	09/02/64 1210	5050		8.5 379			30 1.31 35		159 3.1d		.39					122	n tali. Geografia	s
							32			*1		28.3			4.	1X		•
		174/016-14C02 H																
	08/00/65 1630	5050 5050		7.4 192	3.8 .19 10	19 1•56 78	5.4 .23 12	.02	81 1.62 84	•5 •01 1	. 25	.05	.00		90	87 7	0.4	T
				• • •						2					6.5			
	08/08/66	0000 0000		186	e .			**	***	•				- =				
											•							
	07/17/67 1500		67.0F 19.4C	7.3 161			4.6 .20 12		69 1.38		7•2 •20			**		73	\	S
				- 1 	•	- 1/2	1,0		:									
	07/11/68 0745	5050	64 F 18 C	6.6 205	2.9 .14	20 1.64 82	4.2 .1P	1.4	94 1.68 81	2.0 .04 2	. 25	.11	•0		100	P.9 5	0.2	
					•	02	7		0.1	2	12	. 2						
	08/28/69 0915		67.0F 17.4C	6.5 17R					,									

DATE	SAMPLER	TEMP FIELD LABORATURY PH EC	MINEPAL CONSTIT	WENTS IN MILL	IGRAMS PER LITER IEQUIVALENTS PER LIT ENT REACTANCE VALUE		
			CA MG NA	K CACOS		B F TOS Turb Sto2 Sum	TH SAR REN
	• • • • • • • • •	* * * * * * * * * *	* * * * * * * *	* * * * * * *	* * * * * * * * * *		
	F-03 F-03.A F-03.A1 17M/01W-14C02	NORTH COAST H SMITH RIVER H LOWER SMITH R SMITH RIVER P	U Iver ha		CONTINUED		
06/24/70	0000 5050	60 F 6.3 190 16 C					
3411				# #			
08/12/71 0845	5050 5050	59 F 6.3 170 15 C 7.3 172		75 1.50	7.9 .22		84
09/25/72	5050	59.0F 6.4 185	** **		*		
1510	0000	15.0C					지시 및 경기 설계 기계를 1911년 기계
09/24/73 1200	5050 0000	6.7 200			** **	••••••••••••••••••••••••••••••••••••••	
09/04/74 1400	5050 0000	60.0F 6.5 175 15.5C					
09/10/75 1405	5050 0000	61.0F 6.7 180 16.1C	. 				
06/07/76 1515	5050 0000	67.0F 6.7 200 19.6C					
			· ·		The state of the s		
03/10/77	5000 5000	57.2F 155 14.0C 196	4.1 19 4.6 .20 1.56 .20 10 79 10	.08 1.80	2.9 7.5 4.9 .06 .21 .08 3 10 4	.02 .0 27.0 125	88 0.2 X 0 0.3
09/08/78 0930	5050 5050	64.0F 6.7 255 17.3C 8.4 252	7.9 .34 13	2.36	7.7 .22		110
09/13/79 0850	5050 0000	67.0F 6.7 240 19.4C					
05/23/80 1025	5050 5050	65.0F 6.7 225 18.3C 8.4 222	5.0 21 6.0 .25 1.73 .26 11 77 12	•02 1.92	10 •28	<u></u>	09 0.3 8 0.4 5

	DATE TIME	SAMPLER LAB	TEMP		LD PATURY FC	MINE	RAL CO	NSTITU	ENTS :	IN PILL	IGRAMS PER IEOUIVALEN ENT REACTA	TS PE	R LITER	}	LIGRAMS F	PEP TDS	LITER TH	SAR	RE4
			* * *	* * *	* * * *	CA *	MG * * *	NA + + +	* * ·	CACOS		CL	403 T	URB		SUM	NCH	ASAR	* * *
		F F-03 F-03.A F-03.Al 17N/01=14C02 H	S L S	MITH R	COAST HE RIVEP HE SMITH R RIVER P	TAFB H					c	ONTIN	UED						
	09/28/81 0955	5050		6.7	215		**	7-		10.00									\$
	08/04/82 0930	5050 0000		6.6	220				***										s
	09/17/85 0840		59.0F		210 209	4.0 .20	21 1.73 79	6.0 .26 12		91 1.82		9.0 .25	3.8 .06	••			94 6	0.3	\$
\mathfrak{A}_{1}	06/04/86 0725		59 F 15 C	7.0	202		**												\$
	05/26/52	17M/OlW-14F01 H 5050 5000		7.2	136	9.6 .48 31	9.5 .78 51	6.0 .26 17	.4 .01 1	62 1.24 83	1.7 .04		.00	.16	•0 24•0	96	6 3	0.3 0.4	
	06/04/85 0825		56.0F	7.0 8.0	195 195	8.0 .40 20	13 1.07 55	11 •48 24	.01	59 1.18 61	2.0 .04 2	23 •65 34	3.0 .05 3	• 0	#= 40+ #+ 40+	113 96	74 15	0.6	
	06/05/86 0815			7.0 8.5	290 278	12 .63 19	27 2.22 69	9.0 .39 12	.2 .01 0	138 2.76 91	?•0 •64 1	8.0 .23 8	.01	•0		159 141	141	0.3 0.6	s
	07/30/53	17M/01W-15ED1 H 5050 5000		7+0	126	2.8 .14 11	12 •69 75	4.1 .18 14	.3 .01 1	49 . 0 p	••	8.5 .24					56 8	0•2 0•2	\$

	DATE TIME	SAMPLER L48	TEMP	FIEL	TORY	MINE	PAL CO	NSTITU	ENTS	IN WIL	LLIGRAMS P	ENTS P	FP LITE	M] R	LLIGRA4S	PER	LITER		
				PH -	.EC • • •	CA .	MG + + +	* * *	* +	CACE	RCENT REAC 33 - 304 * * * * *	CL		B TURR * * *	\$102	TDS SUM + +	TH NCH * * * *	SAR ASAR + + +	RE4
		F F-03 F-03.A F-03.Al 17N/01W-15E02 H	S1 L1 S1	ORTH CO MITH RI OWER SM MITH RI	VER H	U IVER H													
	11/29/56		52.0F	6.8	145	3.2 .16 11	13 1.07 72	5.8 .25 17	.01 1	57 1•14 77	1.9 .04 3	6.0 .23 16		•04	23.0	94 94	63 5	0.3 0.4	
	09/14/57	5050 5000	0 F 18 C	7.8	130	2.4	12 •99 74	5.0 .22 16	.5 .01 1	53 1.06 77	.6 .01 1	10 •26 20	.02	• 0	•0 25•0	89 69	55 3	. 0.3	
103	06/25/58 1450	5050 5050		6.7	146	4.0 .20 13	13 1.07 69	6.0 .26 17	.3 .01 1	59 1.13 79	2.0 .04 3	9.0 •25 17	.03	.0	.0 14.0	104 86	65 5	0.3	E
3	09/30/59 1500	5050 5000		7.5	136	2.5 .14 10	13 1.07 73	5.5 .24 16	.5 .01 1	51 1.02 73	3.0 .06	9.5 •27 19		. 0	30.0	97	60 10	0.3 0.3	
	08/30/61 1800	5050 5050		7.7	136	5.0 .25 17	12 .99 69	4.2 .18 13	.01	52 1.04 76	3.0 .06 4	7.0 .20 15	3.8 .06 4	-04	•0 24•0	91	60 10	0.2 9.2	
	06/03/86 1620	17N/01W-16F01 H 5050 5050	58.0F 14.4C		135 133	2.0 .10 8	11 .90 71	6.0 .25 .20	.5 .01 1	36 •72 57	5.0 •10 8		12.0 •19 15	• 0	 	82 67	50 14	0.4	
	06/04/86 0 9 25	17N/C1W-20H01 H 5050 5050	64.0F 17.6C		335 318	34 1.70 49	17 1.40 43	8.0 .35 10	1.8 .05	150 3.00 87	2.0 .04 1	14 .39 11	.01	• 0		198 167	155 5	0.3	
	07/68/53	17N/01W-20P01 H 5050 5000		7.5	292	22 1.10 35	16 1•32 44	12 •52 17	3.2 .08 3	103 2.06	23 •48	17 •4P	·		w- w-	155	121 18	0.5	\$

	DATE TIME	SAMPLER LAB		FIELD Laborat Ph	ORY	MINE	RAL CT Mg	UTITZPO AN	€NTS	IN MILI	LIGRAMS PE LIEQUIVALE CENT REACT	NTS P	ER LITI Value	R	LLIGRAMS F Sto2	TDS SUM	TH	SAR ASAR	REY
			• • •		• •						* * * * *						* * * *		* * *
		F F-03 F-03.A F-03.A1 174/014-20P02 H	SM LO SM	RTH COA ITH RIV WER SMI ITH RIV	ER H Th R	U IVER 4													
	11/06/62 1700	5050 5050		8.3	746	34 1.70 23	41 3.37 45	33 1.44 19		221 4•42 60		61 1.72 23			.3 38.0	496 446	254 33	2.0	
		17N/01V-22E06 H	l																
	06/03/86 1545		59.0F 15.0C		125 122	4.0 .20 16	10 •92 64	6.0 .26 20	.01 1	40 •80 65	2.0 .04 3	. 20	12.0 .19 15	• 0	**	82 65	51 11	0.4	Ť
104	06/13/62	174/01W-25E01 H 5050 5050	54 F	7.7	248	18 •90 35	10 .82		1.0	108 2.16	.0 .00		4.5 .07	•15	29.0	159	88 0	0.9	
+	00/27/53	17N/01V-26R01 H 5050 5000		7+0	208	26 1.30	7.3	9.4 •41	.6	101	8.2	6.2 .17	.00	. ==		118		0.4	
		17#/01#-276D2 H	l			56	26	18	1	86	7	7	٥						
	06/03/86 1425	5050 5050				5.0 .25 18	11 .90 63		•2 •01 1	45 • 90 64		14 • 39 28	.06	•0		86 70	58 13	0.3	
	08/27/53	17N/01W-32M01 H 5050 5000	ı	6.7	_	6+8 •34 29	8.0 .66 55		•5 •01	45 •90 76	4•3 •09 B		1.5 .02 2			59	50 5	0.3	
	10/29/58 1250	5050 5050		7.9		7.0 .35 19	14 1.15 62		1.9 .05 3	70 1.40 77	5.0 .10 6	.31 .17	.00		.0 17.0	124 105	75 5	0.4	E
	05/27/52	179/014-34C01 H 5050 5000	1	6.9	103	4.8 .24 23	5.8 .48 47		2.0 .05 5	34 • 6d 65	2.1 .04 4		2.9 .05 5	•0	16.0	69	36 2	0.4	

	DATE TIME	SAMPLER LAB	TEMP	PH FIE	ATDRY	klmt	RAL CO	UTITZM	ENTS	IN ►	ILLIGRA ILLIEOU ERCENT	IIVALE	NTS P	ER LIT	E R	LIGRAMS F	PFR TOS	LITER TH	SAR	RE4
						CA + +	#6 * * *	NA + +	* *	C 4	CD2	40.2	r i	MOS	THER	6102		MALL		
		F F-03 F-03.4 F-03.41 17N/01#-34601	S L S	ORTH CHITH R.DWER S	IVER H	IVER H														
	06/14/55	5050 5000	55 F 13 C		134	7.4 .37 28	9.3 .68 52		•6 •02 ?	37 • 74 51		7.4 .15 11	.23	14.0 .23 17	•0	.0 16.0	90	53 16	0.3	
	06/03/86 1350	17N/01W-34603 5050 5050	62.0F	6.6 7.9	102 101	4.0 .20 19	8.0 .66 64	4.0 .17 17	•00	3(• 7) 7)	?	3.0 .06 6		2.4 .04 4	.0		67 50	43	0.3	T
105	06/05/86 0730	17N/01W-35F01 5050 5050	67.0F	7.3 8.5	470 440	24 1.20 24	33 2•71 55		1.0 .03	179 3.56	8	6.0 .12 3		7•7 •12 3	•0	**	258 234	196 17	0.7 1.5	s
	11/29/56	184/01W-17R91 5050 5000	54 F 12 C		215	11 •55 25	13 1.07 48	14 •61 27	.01 0	9; 1.86	5	.00	16 • 45 19	•1 •00 0	•12	•0 33•0	143	81 0	0.7 1.0	
	12/04/57	5050 5000		7•6	154	8.4 •42 27	8.9 •73 46	9.5 •41 26	• 5 • 01 1	50 1.16 74	ì	1.9 .04 3	13 .37 23	.3 .00 0		29.0	107	57 0	0.5	
	10/ /59	5050 5050		7.7	254	14 •70 26	14 1•15 42	20 •87 ?2	•5 •01 0	114 2•24 84	,	•0 •00 0	16 • 45 16	•3 •00 0		.0 17.0	150	93 0	0.9	
	10/ /59 1200	5050 5000		7.7	254	14 •70 26	14 1.15 42	20 •87 32	.5 .01 .0	114 2.29	3	.00	16 •45 16	.00 0		.0 17.0	150	93 0	0.9	
	/ /61	5ú50 5050		7.0	213	16 .80 36	7.8 .64 29	19 • 79 35	.5 .01 .0	89 1.78 92	3	1.0	13 •37 17	.01		•1 35•0	145	72 0	0.9	
	09/30/61	5050 5050		7.0	213	16 •80 36	7.8 .64 29	16 • 78 35	.5 .01 0	89 1.76 82	3	.1 .00 0	• 13 • 37 17	•4 •01 0		•1 35•0	144	72 0	0.9 1.2	
	39/17/62	5050 5050		8.3	215	12 •60 27	12 .99 44	15 •65 29	•6 •02 1	3. 1.90 81	;	1.0	. 42	1.2		.0 34.0	137 148	80 0	0.7 1.0	

	DATE TIME	SAMPLER Lab	TEMP	LABO	RATORY	MINE	RAL CO	UTITZM	ENTS	IN MIL	LIGRAMS PE	NTS PE	R LITE	R	LIGRAY'	_			
			* * *	PH * *	* * * * EC	* * *	#G + + +	NA + + +	K * *	LACD	CENT REACT 3 \$04 * * * * *	ČL	ND3	TURB + + +	* * * * *	TOS SUM + + +	TH NCH + + +	SAR ASAR * * *	RE4
		F F-03 F-03.A F-03.A1 18N/014-17R01 H	SM LD	ITH WER	CDAST HE RIVER HE SMITH PI RIVER HE	U IVER H						CUNTI:	•UED						•
	08/28/64 1645	5050 5050		7.9	250		~-	19 •78 29		107 2.14							94		s
	09/10/65 1505	5050 0000	,	8.3	228	17 •85 36	9.8 .61 35	15 •65 28	•7 •02 1	92 1.64 80	•0 •00 0		1.0 .02 1	•00		140 115	83 0	0.7 1.0	
	08/09/66	0000 0000			215	~=		***											
106	37/18/67 0810	5050 5050		8.0	226			13 •57 25		85 1.70		18 •51					87		\$
	10/29/58 1530	18N/01V-17P02 4 5050 5050		7.8	212	11 •55 26	13 1.07 50	12 •52 24	•00	65 1.70 78	•0 •00 0	17 •48 22		•0	.2 30.0	149 134	82	0.6 0.8	E
	09/27/59 1500	5050 5000		7.9	203	11 •55 26	13 1.07 50	12 •52 24	.00		.01	13 .37 17		•0	34.0	137	81 0	0.6	
	/ /61	5050 5050		7.4	211	24 1.20 54	2.9 .24 11	10 •78 35	•5 •01 0	1.75	1.3 .03	13 •37 17	.02	•09	•1 34•0	148	72 0	0.9	
	07/10/63 0935		76.0F 24.4C	8.0	192	14 •70 35	10 .82 41	11 .48 24	.2 .01 0	1.68	.00 0	11 •31 16	.00	• 0	23.0	116	.75 0	0.6 0.7	
	08/28/64 1640	5050 5050	-	6.1	229			12 •52 21		99 1.96		14 •39	••				95		\$

	+ + + + + + + + + + + + + + + + + + +	SAMPLER LAB	L	FIELD ABORATORY PH EC	CA	MG	NA	ĸ	N MILLI PERCE CACOS	IGRAMS PER IFQUIVALEN ENT REACTA SD4	TS PER L NCE VALU CL NO	ITER E (3 Turi		TOS	TH	SAR ASAR + + +	RE4
		F F-03 F-03.4 F-03.41 18N/014-17R04	IMS FUN SMI	TH COAST HE TH RIVER HE ER SMITH RI TH RIVER PE	U IVER HA												
	08/27/69 1600	5050 5050	69.0F 20.5C		18 •90 31	16 1.32 46	15 •65 23	.01	110 2.20 80	1.6 .03 1	18 •51 •0			162 135	110 1	0.6 1.0	
	06/24/70 1635	0000 5050	62 F 17 C	7.0 278						- -		-					\$,
	09/11/71 1440	5050 0000	64 F 18 C	7.1 279									***				\$
107	09/26/72 0820	5050 5050	58.0F 14.4C		16 •80 26	20 1.64 54	14 •61 20	.01 0	107 2•14 73	5.1 .11 4	.58 .0	2 .1 0 0) 	190 144	122 15	0.6	т
	09/24/73 1400	5050 0000	63.0F 17.2C			••				, 							ş
	06/04/86	18N/01W-23N02 F 2894 3334	•	159			1C •44		••	•00	15 66. .42 1.0	_		99			
	08/21/52	18N/01W-25NC1 P 5050 5050		h•6 59	4.8 .24 39	1.7 •14 ?3	5.0 .22 35	•6 •02 3	17 •34 47	6.4 •13 18	6.0 1. .23 .0	2	0 10.0	48	19	0.5 0.1	
	11/28/55	18N/01W-26D01 5050 5000	54.0F 12.2C	6.4 66	2.8 •14 20	3.2 .26 37	6.8 .30 42	.01	20 •40 57	1.0 .02 3	6.5 6. .18 .1 26 1	0	.0 14.0	53 53	20	0.7	E
	10/02/57	5050 5060	O F 18 C	5.7 84	2.6 .14 18	2.7 .22 .28	9+2 •40 51	•5 •02 3	21 •42 55	1.9 .04 5	7.5 6. •21 •1 27 1	0	13.0	57 57	18 0	0.9 0.2	
	09/04/58 1630	5050 5050		7.7 66	1.0 .05 8	3.0 .25 41	7.0 .30 49	.01 .01	14 •28 46	.02 .03	7.0 7. •20 •1 33 1	ì	16.0	44 51	14	0.6	

	DATE TIME	SAMPLER LAB		FIEL LABORA PH	FC	CA	AL COM	NA	ENTS K	IN MILL PERC CACD3	IGRAMS PE ILOUIVALE ENT PEACT SO4	NTS PE ANCE V CL	R LITE	R B Turb		PER TDS SUM	TH NCH	SAR ASAR + + +	RE1
		F F-03 F-03.4 F-03.Al 184/01W-26D01 H	S#	IPTH CO IITH RI IWER SM IITH RI	VER HU ITH RI	VER HA					:	CONTIN	€UED						
	08/30/61 1650	50 50 5050		6.1	101	5.5 .27 31	3.8 .31 .36	6.3 .27 31	•3 •01 1	8 •16 19	1.6 .03 3	. 25	26.0 .42 49		.0 12.0	69	29 21	0.5	
	01/19/87	2894 3334			105			7.0 .30			4.0 .08		22.0 .35			56			
	08/30/61	184/01W-26D02 H 5050 5050		6.1	101	5.5 .27 31	3.6 .31 36	6.3 .27 31	.3 .01 1	8 •16 19	1.6 .03 3	. 25	26.0 .42 49		.0 12.0	69	29 71	0.5	
108	09/15/62 1500	5050 5u50		7.0	124	6.8 .34 31	4.9 .40 36	8.2 .36 32	•5 •01 1	7 •14 13	.6 .01 1	.28	42.0 .68 61		.0 11.0	100 88	37 30	0.6 0.0	£
	10/12/86	18N/01W-26D03 H 2894 3334			72			5.0	****		3.0		8.9			42			
	01/15/86	18H/01=-26F01 H 2594 3334			135		••	10 •44	upin Tip o	•-	4.0 .08		22.0		**	84			
	07/18/67 0700	*	59.5F 15.3C	7.4	45	4.6 .23 25	6.2 .51 56	4.0 •17 19	.00	36 •72 76	4.8 •10 11		•0 •00 0	•0	 -	27 46	37 1	0.3	E T
	07/11/68 1030		60 F 16 C	5.6	95			**											
	08/28/69 1135		65.0F 18.3C	6.3	102		**												
	06/25/71 0910		50 F 14 C		83 85					33 •66		4.1 .12					34		_

	DATE Time	SAMPLER	TEMP FI	ELD PRATORY	MINER	AL CO	NSTITUE	ENTS I		RAMS PER QUIVALENT	LITER		FRAMS P	ER LITER	
	* * * * *			EC	CA	₩G	NA	ĸ		T REACTAN	CE VALUE	B Turb Si	os s	DS TH 504 NCH 5 * * * * *	SAR REM ASAR + + + + + +
	AB/AE/82	F F-03 F-03.A F-03.A1 18M/01W-26M01 H	SMITH LOWER	RTVER	HU RIVER HA Plain HS:	A				CE	ONTINUED				
	08/05/82 0945	5050 0000	0+4	, 170											
	06/04/86	18N/01W-2AKO1 H 2894 3334		95			6.3 .27			5.0 .10	8.8 22.0 .25 .35	***		59	
109	03/19/87	184/Uld-25K02 H 2894 3334		99			5.9 .26				7.2 24.0	·		81	· •
	06/04/86			86			5.5 .24	••			6.8 2.7 .19 .04			54	
	06/04/86	18N/01W-26L01 H 2894 3334		95		((ilo sings	4.1 .18	**	**	3.0 .06	5.0 .9 .14 .01			59	
	91/19/87	3334 5864 18M/OTM-50F03 H		77			3.0 .13			2.0 .04	5.0 1.8 .14 .03	••		48	
	03/19/87	184/01W-26P02 H 2894 3334		111			6.7				7.5 30.0 .21 .48			86	Ę

	DATE TIME	SAMPLER LAB	TEPP		ATORY	WINEG	AL CO	NSTITU	ENTS	IN MILLI	GRAPS PER EQUIVALEN	TS PE	R LIFE	R	LIGRAMS		_		
			* * * *	PH * * *	EC	C#	MG * * *	NA + + +	K * *	CACOS	NT REACTA: \$04 * * * *	CL	NDB		F \$102 * * * *	TDS SUM * *	TH NCH * * * *	SAR ASAR + + +	RE4 * * *
		F F-03 F-03.4 F-03.41 184/01W-26H01	\$1 £1	HITH R OWER S	DAST HR IVER HU HITH RI IVER PL	I Vep ha					C.	ONTIN	IEN :						
	09/11/71 1300	5050 0000	64 F 18 C		80						"								
	09/26/72 0755	5050 5050	62.0F 16.7C		120 111		•	4.5 .20 18		43 .86	••	6.8 .19					45		S
	09/24/73 144ú	5050 0000	62.0F 16.7C		125	*													s
110	09/04/74 1510	5050 0000	62.0F 16.7C		105					**									>
	09/10/75 1510	5050 0000	67.0F 19.4C		100						400-500								5
	06/07/76 1510	5050 0000	55.0F 12.8C		80						40 40		**				,		\$
	08/10/77	5000	59.0F 15.0C		100 111	6.9 .34 32	6.3 .52 49	4.4 •19 18	•5 •01 1	44 •86 51	3.3 .07 6	4.4 •12 11		•02	13.0	67	43	0.3	
	09/08/78 1230	5050 0000	62.0F 16.7C		110					ab- 4b-									
	09/13/79 0940	5050 0000	64.0F 17.8C		120														
	1100	5050 0000	59.0F 14.4C		116			••											
	09/28/81 1045	5050 5050	61.0F 16.1C		160 166	10 •50 30	11 -95 54	6.0 .76 15	•7 •02 1	70. 1.46	***	7.0 .20		-			70 0	0.3 0.4	. 5

DATE Time	SAMOLFR LAB		MINERAL CO	NSTITUENTS IN	MILLIGRAMS PER	NTS PER LITER	t	
		РН ЕС	CA MG	NA K	PERCENT REACT: CACUB SO4	CL NO3 1	TURB SID2 SI	DS TH SAR REM JM NCH ASAR
* * *	• • • • • • • • • • • •			* * * * * * *			• • • • • • •	* * * * * * * * * * *
	F F-03 F-03.4 F-03.41 18N/01H-26P03 H	NORTH COAST H SMITH RIVER H LOWER SMITH R SMITH RIVER P	IVER HA					
03/19/		105		5.5 .24	10 •21	6.1 27.0 .17 .44	40 db 40 40 6	90 E
04/15/	18N/01W-26QD2 H	!		f.6	5.0	9.3 36.0	12	26 E
	3334	112		•29	•10	•26 •58	₹₽ ŝip	
06/04/	16M/01W-26Q05 H 86 2894 3334	124		8.8	1.0 .02	8.2 30.0 .23 .48	;	77
4	18N/01W-26R02 F							
_ 06/03/	86 28 9 4 3334	88		6.1 .27	1.0	8.2 24.0 .23 .39		55
06/04/	18N/01W-26R03 P			8.5	1.0	7.6 15.0	;	71
	3334	. 113		•37	•02	•21 •24		
03/19/	18M/01W-27B01 H 87 2894 3334	133		6.2 .27	6.0 .12	11 45.0 .31 .73	10	07 €
	184/014-27F01 H	1						
07/30/		6.0 72	3.6 2.8 .18 .23 28 36	5.0 .3 .22 .01 34 2	14	7.2 .20		20 0.5 7 0.0 S
06/12/	62 5050 5050	56 F 13 C 6.4 84	5.7 2.7 .28 .22 38 30	5.1 .4 .22 .01 30 1	11 .3 .22 .01 31 1	7.3 17.0 .21 .27 30 38	.05 .0 11.0	25 0.4 56 14 0.0

DATE	SAMPL LAB	ER	TEMP	FIE LABOP PH	ATORY	HINE	RAL CO	INSTITU	ENTS I	N MTLI	IGRAMS PER LEQUIVALE CENT REACT	NTS PE	R LIT		LIGRA45 F	PER TDS	LITEP TH	SAR	REY
		• • • • • • •				CA + +	.×G + + ∗	NA + + +	K ★ + +	CACU		CL	403	TURR	* * * *	SU# + +	NCH + + +	ASAR	
08/13/86		F F-03 F-03.4 F-03.41 18N/01W-27K01	SI LE SI	TITH R	DAST H IVEP H MITH R IVER P	U IVER H		5•3			6.0	7.7	17.0			82			
VV/ 13/ 40	3334				131		, 3 · (*)	•23	•		•12		.27						
01/19/87			4		451		***	30 1.31			28 •58	120 3.38	41.0 .66		an en	282			
38/10/77	5000 5000		55.4F 13.0C		250 316	13 •65 18	34 2.80 78	3.2 .14 4	•7 •02 1	160 3.20 82	19 •40 10		9.2 .15	•01	.0 34.0	214	170 13	0.1	x S
07/30/53	5050 5000		56 F 13 C	7.2	332	11 •55 15	36 2.96 81	3.4 .15	•5 •01 0	171 3.42		6.2 .17	••	•			176 5	0.1	\$ \$
08/20/54	5050 5000		56 F 13 C	8.0	341	8.9 .44 12	39 3.21 84	3.2 .14 4	•5 •01 0	177 3.54 91	6.6 .14 4		3.2 .05	.05	38.0	212	184 6	0.1	
08/11/58	5050 5050			8.3	348	13 •65 16	39 3.21 79	4.0 .17 4	•7 •02 0	184 3.68 91	.00 0	9.0 .25 6	.10		20.0	274	190	0.1	E
09/03/59 1340	5050 5000			8.3	329	12 •60 16	36 2.96 79	4.3	•7 •02 1	173 3.46 93	4.0 .08 2	4.0 •11 3	.08	• 0	•0 37•0	207	178 5	0.1	
09/ /60	5050 5050			8.4	381	13 •65 15	42 3.45 80	3.9 .17	.7 .02 0	194 3.68 92	4.6 .10 2	5.0 .14 3	.08	•05	39.0	229	205 11	0.1	
J8/30/61 1640	505L 505C			7,6	356	15 •75 19	37 3.04 76	3.8 .17 4	.8 .02 1	182 3.64 92	4.0 .08 2	5.8 .16 4	.09	•07	40.C	551	191 8	0.1	
69/07/62 1500	5050 5050			8.2	343	14 •70 13	36 2.96 77	3.7 .16	.02 1	162 3.64 91	5.0 .10 2	6.7 •19	9.0	• (37.0	192 217	184	0.1	\$

	DATE TIME	SAMPLER LAB	TEMP	FIEL LABORA PH		CA	RAL CO	NA	к	IN MILL PERC CACOS	IGRAMS PER IEQUIVALER ENT REACTA SG4 + + + +	ITS PE INCE V CL	R LITE ALUE ND3	R B Turp	2012	TOS	TH NCH	SAR ASAR * * *	RE4
		F F-Q3 F-O3.A F-O3.A1 18N/O1W-34MD2 H	S L S	ORTH CO MITH RI OVER SM MITH RI	VER H	U IVER H					(ONTIN	UED						
	07/10/63 1205	5050 5050		8.3	405	22 1.10 26	35 2.85 69	3.9 .17 4	.8 .02 0	166 3.76 90	4.8 .10 2	6.1 .17 4	e.3 .13 3	•0	.1 33.0	226 227	198 11	0.1 0.3	
	08/28/64 1445	5050 5050		8.0	400	-		3.6 .16 4		189 3.78		8.8 .25	**				215		3
	08/10/66 L000	5050 5050		7.0	374		2.7 .22			174 3.48		6.7	••				191		S
113	07/17/67 1615	5050 5050	59.0F 15.0C		404														
	07/11/68 6830	5050 5050	56 F 13 C		380 394	13 •65 9	40 3•35 45	4.0 •17 2				5.2 .15					200	0.0	S
	08/28/69 1030	5050 5050	64.0F 17.8C		370 363	15 .75 19	37 3.04 76	4.2 .18 5	1.1 .03 1	177 3.54 91	6.7 .14	5.8 .16 4	4.3 .07 2	•0		199 180	169 13	0.1 0.3	
	06/25/70 1000	00J0 5050	57 F 14 C		340		607-86	***			**			••					\$
	08/12/71 0830	5050 0000	50 F 14 C		325														\$
	09/26/72 0920	5050 0000	57.0F 13.9C		355														S
	09/24/73 1255	5050 5050	58.0F 14.4C		320 315	.55 16	33 2.71 79	3.0 .13 4	.6 .02 1	154 3.08 87	6.2 .13 4	4.8 .14 4		•0		169 163	165 9	0.1 0.2	
	04/04/74 1450	5050 0000	56.0F		319														

DATE TIME	SAMPLER Lab	TEMP FIEL LABORA PH		FRAL CONSTIT	UENTS IN M	ILLIGRAPS PER ILLIEQUIVALEN ERCENT REACTA	ITS PER LITE	R	PEP LITER	SAR REY
		гл	CA	MG NA		CO3 SO4		B F TURB SID2	SOM NCH	ASAR KET
* * *	* * * * * * * * * * *		* * * * *	* * * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *
	F F-03 F-03.A F-03.A1 18N/01W-34M03	SMITH RI				c	CONTINUED			
07/10/ 1205		8.3	405 1.10 26	2.88 .17	.02 3.7		6.1 8.3 .17 .13 4 3	.0 .1 33.0	226 198 227 11	0.1
08/28/ 1445		8.0	400	3.6 .16 4	18 3.7		8.8 .25	**	215	ş
08/10/ 1 00 0		7.0	374	2.7 .22	17 3.4		6.7 .19		191	S.
07/17/ 1615		59.0F 15.0C	404				apirapis atlantis	**		
07/11/ 0830		56 F 7.0 13 C 8.6	380 13 394 .65	3.35 .17			5.2 .15		200	0.0
06/26/ 1030		64.0F 7.0 17.8C 7.6	370 15 363 •75 19	3.04 .18	.03 3.5		5.8 4.3 .16 .07 4 2	.0	199 189 180 13	0.1 0.3
06/25/ 1000		57 F 6.6 14 C	340				** **	******		\$
08/12/ 0830		58 F 6.8 14 C	325		*** 47*		elder Green Glave teller	** **		s
09/26/ 0920		57.0F 6.6 13.90	355			<u></u>				\$
09/24/ 125		58.0F 6.R 14.4C 6.1	320 11 315 •55	2.71 .13	•02 3•0		4.8 12.0 .14 .19 4 5	•0	169 165 163 9	0.1 0.2
09/04/ 1450		58.0F 6.5 14.4C	319							Š

116

=	DATE TIME	SAMPLER LAB	TEMP	LABORA PH		CA	MG	MSTITU NA + + +	ĸ	IN MILL PERC CACGE		MTS PE ANCE V CL	R LITE ALUE NO3	P B Turb	LIGRAM: F SID2	S PER TDS SUM	LITER TH NCH + + * *	SAR ASAR	RE4
		F F-03 F-03.4 F-03.41 184/01W-34M02 H	2. Fi	ORTH CO NITH RI OWER SP NITH RI	VER H	IVER H					ı	CONTIN	UED						
	09/10/75 1445	5050 0000	59.0F 15.DC	6.6	295														S
	06/07/76 1450	5050 0000	56.0F 13.3C	6.8	300									•-					5
11	06/10/77	5000 5000	59.0F 15.0C		230 277	11 .55 18	26 2.30 77	3.1 .13	•7 •02	130 2.60 83	13 .27 9	5.4 .15 5	6.6 .11 4	•02	33.0	179	140 13	0.1 0.2	
	09/08/78 1015	5050 0000	57.0F 15.0C	6.8	330						elle lan								
	09/13/79	5050 0000	60.0F 15.5C	6.9	340					***									
	06/23/80 1045	5050 0000	57.0F 13.90	7.0	346						**								
	09/28/81 1020	5050 0000	58.0F 14.4C	6.9	333			**		~~		*** ***							
	08/04/82 0955	5050 5050	59.0F 15.0C		340 341	12 •60 16	35 2.69 78	4.0 .17 5	•7 •02 •1	151 3.02		6.0 .17					174 23	0.1	\$
	09/17/85 0920	5050 0000	58 F 14 C	7.0	395			**				· 							
	06/04/86 10?5	5050 5050	56.0F 13.3C		470 447	15 •75 14	53 4•36 82	4.0 .17 3	1.2	214 4.28 85	14 •29		16.0 .26 5	•0		253 240	256 42	0.1 0.2	s

DATE TIME	SAMPLER LAG			FIEL LABORA PH	EC	CA	MG .	NA	ĸ	IN MIL PER CACO	LIGRAMS PER LIEQUIVALE CENT REACT/ 3 SD4	ITS PI LNCE I	ER LIT Value ND3	ER B Turp	LIGRAMS F SID2	TDS SUM	TH NCH	SAR ASAR	REN
	F F-03 F-03.A F-03.Al 18N/01W-35801 H		NO SM LO	RTH CO IITH RI IWER SM	AST H VER H	8	\											,,,	• •
11/28/56		54.		7.0	69	4.4 .22 32	2.4 .20 29	5.9 .26 38	.01 1	.44 65	1.9 .04 6		.03		14.0	50 50	21	0.6	ŧ
09/13/57	5050 5000	0 18	F C	7.0	78	5.2 .26 35	2.2 .18 24	6.5 •29 38	.02	21 •42 57	1.0 .02 3	.21	5.4 .09 12		17.0	57 58	22	0.6 0.2	É
11/28/56	184/014-35802 H 5050 5000	54 12		7.0	69	4.4 .22 32	2.4 .20 29	5.9 .26 38	.2 .01 1	27 •44 65	1.9 .(4 6		2.0 .03 4	.05	14.0	50	21 0	0.6	
09/13/57	5000			7.0	78	5•2 •26 35	2.2 .18 24	6.5 .26 38	.02	21 •42 57	1.0 .02 3	.21	5.4 .09 12		17.0	58	22	0.6	
06/04/86	18N/01m-35C01 H 2694 3334	1			139			7.7 .33			6.0 •12		39.0 .63			87			
06/05/86	194/01W-35CD2 H 2894 3334	I			99.			5.1 .22	***		5.0 .12	•17	20.0			62			
01/19/67	18N/014-35E01 2894 3334	ŧ			133			6.0			8.0 .17	10	39.D .63		 	83			
06/03/86	18M/U1W-35F01 F	+			124			6.3 .27			5.0 .10		33.0 .53			77			

	DATE TIME	SAMPLER LAB	TEMP FIEL LABORE		MINFR	MG + +	NSTITU NA + + +	FNTS :	IN MILLIE	T FEACTAN	'S PER LITE	MILI R B TURB F • •	F S102 + * * *	TDS SUM * * *	TH	SAR ASAR + + +	RE4
	11/07/86	F F-03 F-03.A F-03.A1 18N/01W-35FD2 H 2894 3334	SMITH P	IVER MITH	HU RIVER HA PLAIN HS	A 	5.5 .24			2.0	10 49.0 .28 .79	••	 	79			
	07/29/53	18N/01W-35G01 H 5050 5000	. 6.6	63	7•2 3 •36 45	2.6 .21 .26	.22		26 •52		7.0 .20				29 3	0.4	s
117	06/04/86	28 9 4 3334		134			6.1 .27		•	7.0 .15	8.8 27.0			84			
	06/03/86	18N/01W-35J01 H 2894 3334	ı	7:	2-		5.2 .23			2.0	7.6 4.4 .21 .D7			45			
	26/04/86	184/01W-35K92 H 2894 3334	ı	13	ı		6.1			6.0 .12	7.7 24.0 .22 .39			82			

Appendix E Minor Element Analysis

This Page Blank

MINOR ELEMENT ANALYSES OF GROUND WATER

	TIME	SAMP	DISC4 NEPT4 EC + + + +	TEMP PH + + +	ARSENIC	:	BNSTITU MARIUM Cadmiu 4 * *	H	IN MILL CHROM (CHROM (ALL)	PER LIT COPPER IRON		LEAD MANGANES + + +		MERCURY SELENIUM + + +	SILVER ZINC	• •	REM
			F F-01	WINC	H COAST													
			18M/01W-05501	44		• .							4-					
	08/11/58 1505										0.02	D						
	08/27/59	6.050																
	1500										0.30	T						
	09/ /60	5050										_						
	• • • • • • • • • • • • • • • • • • • •	5050									0.24	T		_				
	08/36/61	3050									0.09	Ď		D D		0.11	Ð	
	1700	5050			0.00	D					0.18	T	0.00	U	_	0111	•	
			18H/01H-05K01	H								_		-				
	09/10/75	5050		58.0F				_			0.01 0.09	T T	0.00 0.04	T		0.03	T	
	1530	5050	183	6.1			0.00	Ŧ				•		•			·	
ದ	08/10/77	5000 5000		14.5C	***						0.00	Đ						
			F-03 F-03.A F-03.A1 1AN/014-02001	LDVI SMIT	TH RIVER ER SMITH TH RIVER	RIVER												
	06/23/58	5050																
	1520									•	0.47	D			_			
	08/14/59	5050	1									_						
	0910	5 0 0 0	•								0.00	0						
	08/14/59	5050)						**			T						
	0911										8.1	•						
	D9/ /60										10.	T						
		5050	1								0.00	D	0.00	D				
	08/29/61					Ð					0.72	Ť	0.00	D		0.02	D	
	1645				0.00	u						•		_	-			
	08/16/66										6.3	T						
	1515	2050	,		_ _								0.01	D				
	09/25/72			58.0F				n			0.01 0.02	D D	0.15	D	0.00 0	0.05	Ð	
	1445				0.00	IJ	G. 00	u	_		0.02	•		-				
	08/10/77	5000 5000		14.0C							0.02	Đ						

·	DATE TIME # # #	SAMP LAR D	₽₽Т4 * *	DISCH EC + + +	TEMP PH + + +	ARSENIC		CONSTITUENTS GARIUM CADMIUM # # # #	IN MILLIGRAMS CHROM (ALL) CHROM (HEX) # # # #	PER LITER COPPER IRON + + +	•	LEAD MANGANESE + + + +	MERCURY SELENIUM + + +	SILVER ZINC	•	REM + +
			164/0	14-07FQ1	. н											
	10/29/5	8 5050												***		
	1230	5050						•	eter visa	0.01	D_		es-im-			
	09/14/5							cale Mills								
	1540	5000							***	0.00	D					
	09/14/5 1541	9 505C 5000				***				0.40	T	400 min				
	09/ /6										_			'		
		5050									Ť					
	DR/30/6 1430	1 5050 5050				0.00	D			0.00 2.1	D T	0.00 t		0.06	D	
			164/0	1W-15C01	LH											
	09/27/5	3 5050			53.0F											
		5 0 0 0				-		***		0.17	T					
122	12/04/5				53.0F					 0.01	т					
		5000				_				•	•					
	10/29/5 1420	8 5050 5050			56.0F					0.	D					

	10/ /5	5000								0.00	D					
	10/ /5	9 5050							••							
	0001	5000				-			 .	0.07	T					
	09/ /6												· 			
	1550	5050								4.8	T					
	08/29/6 1615					0.00	D			0.02	D) 	0.05	D	
	101,	2030					-									
			TOWA)14-16D0	1 7							* *				
	07/06/3	6 5450 5050			_					0.	0	**				
	09/04/! 1400	5000 5000								0.00	0					
	09/04/	59 5050								**			•			
	1461	5000							**	0.23	T					
	09/ /6	60 5050									_					
		5050								3.7	Ţ					
	08/29/0 1600	5050 5050				0.00	D			0.00 0.09	D T		0 0 	0.46	D	

HINDR ELEMENT ANALYSES OF GROUND WATER

	T	ATE	SAMP LAR + +	DEPTH	DI°CH EC * *	TEMP PH * *		ARSENI(c	CONSTITUENTS BARIUM CADMIUM # # # #	IN MILLIGRAMS CHROM (ALL) CHROM (MEX)	PER LI COPPE IRON	R	LEAD MANGANE:		MERCURY SELENIUM	SILVE		REM
				F-03.A F-03.A1		ı	SMITH LOWER	COAST RIVER SHITH RIVER	BIAE	R HA N HSA			• (CONTINUED				• •	• •
	10/	29/58	5050	10/1/01-	-11401														
		310	5050									0.01	D						
		18/59 600	5050 5000					-				0.04	T						
				164/018	-17KJ2	: н													
		24/80 345	5050 5000		. 250	18.0						1.400	Ð	 0.070	0				
				16N/01W	-18F01	н													
	08/	27/53	505G 5000			53.0	F					2.3	T						
12	12/0	04/57	5050 5000			53.01	F .	,			 	0.05	T						
	09/	25/58	5050 5800			53.01	F .				***	0.13	т						
		25/58 550	5050 5050									0.13	, D						
				16N/01W	-19J01	H							Ü						
	04/3	30/53	5050 5000									0.4	T						
				16H/01W-	-20A01	н													
		18/59 545									 **	0.09	T						
				16M/01W-	-20A02	н													
	04/3	10/53	5050 5000									0.1	T						
	12/0	4/57	5050 5000									0.00	D						
		9/58 45	5050 5050									0.	D				***		
	09/	/60	5050 505G									0.14	ī				**		
		9/61	5050 5050				o	.00 (D	'		8.02 0.18	D T	0.00	D D		0.04	0 0 0 D	• •

MINOR ELEMENT ANALYSES OF GROUND WATER

	DATE TIME	SAMP LAR		SCH E'C + +	TEMP PH + +	•	ARSENI + +	C •	•	CONSTITUENTS TARIUM CADHIUM	IN MILLIGRAMS CHROM (ALL) CHROM (MEX) + + + + +	PER LIT COPPEP IRON	rer t	LEAD MANGANI	SE +	HERCURY SELEMIUM + + +	•	SILVER ZINC	• •	***
			164/014-2	:0A03	મ ્															
	/ /6	1 5050 5050					0.00	D				0.04 0.05	D T	0.03	0 D			0.16	D	
			16N/01W-2	0801	н															
	04/30/5	3 5050 5000									100 Airs 100 Airs 100 Airs	0.4	T							
	12/04/5	7 5050 5000										0.02	D			=				
			16H/01W-2	OH01	н															
	10/29/5	8 5050 5050					- ·				**	0•′	Ð			***				
	09/18/9 1620	9 5050 5000										0.08	Ť			=				
124	11/29/6 1510	0 5050 5050			57.0F		_					0.78	т							
	08/29/6 1530	1 5050 5050					0.00	D			•• .	0.00 0.59	D T	0.00	0			0.00	Đ	
	09/10/7	7 5000 5000		170	13.50					==		1.40	0			=		=		
			164/014-2	1 401	н															
	05/01/5	3 5050 5000		,								0.5	т					=		
	12/04/5	7 5050 5000										0.10	D							
			16N/01W-2	6001	н															
	10/20/5	5050 5000		-								0.07	T							
	09/ /6 1610	0 5050 5050										0.22	T							

HINOR ELEMENT ANALYSES OF GROUND WATER

						· ·						
	PATE HET + + +	SAMP LAR	DISCH DEPTH EC	PH	ARSENIC	CONSTITUENTS FARIUM CADHIUM • • • •	IN MILLIGRAMS CHROM (AEL) CHROM (MEX) + + + + +	PER LITER COPPER IRON + + + +	LEAD HANGANESE + + + +	HERCURY SELENIUM	SILVER ZINC	RFH +
			18N/01W-26D	01 H							•	
	09/04/56	3050	n	•						,		
	1630				-			1.48 D	-	· \		
								1.70 0				
	08/30/61							G.05 D	0.03 D			
	1650	2020	•		0.00 D			0.08 T	0.00 0	***	0.07 D	
			184/014-2646	от н .			•					
						•	,· • •	-	*			
	DB/10/77			15.0C			**				<u>.</u> .	
		5000) 10	00				0.00 D				
			184/017-3440	30 н								
	08/10/77			13.0C								
		5000	25	50	, 			C. CO D				
			18H/01V-34H0	12 H								
ᅜ	08/11/58											
Ç		5050	l					0. D				
	09/03/59	5050	•									
	1340									-		
								0.00 D			-	
	09/03/59 1341											
	1571	2000						0.02 T				
	09/ /60	5050						.5				
		5050					**	0.03 T				
	*******							V. V.				
	09/30/61 1640							0.00 D	0.02 D			
	2040	2030			0.00 D			0.02 T	0.00 D		0.07 D	
	08/10/77	5000		15.0C								
		5000	23	0				0.00 D				
			164/014-3580	•				••••		-	**	
			1441078-3380	7 4								
	09/13/57	5050										
		5000					•••	0.01 0				
			1444010.90	• •				-745 4	_		****	
			16N/01W-20H0	2 11								
	04/30/53	5050										
		5000						C.O T			-	

HINDR ELEMENT ANALYSES OF GROUND WATER

		DATE TIME	SAMP LAB		SCH EC	TEMP PH:		ARSENI		BAR	ITUENTS	IN MI	PER L COPP IRC	ER DN	•	LEAD MANGANE	-	MERCURY SELENIUM + + + +	SILVE		REM • •
				F-03 F-03.A F-03.A1 17N/014-20	0 00 2	Н	SHITH	CDAST RIVER SMITH RIVER	HU						co	NTINUED					
		/06/62 L700	5050 5050										0.30) Т							
		/06/62 L701	5050 5050					0.00	ņ		, ,		0.02 0.00	: D		0.02	D D		0.19	0	
				17N/G1V-3	2401	н															
		/29/58 1250	5050 5050								•		1.3	D							
_				18N/014-0	5601	н															
921	06	/11/58	5050 5800										0.02	. 0	ı						
				18N/01V-17	7R01	H															
	10	/ /59	5050 5000								•		0.01	. D	ı						
		/ /59 0001	5050 5000										7.5	т	,				=		
	•	/61	5050 5050					0.00	D				0.05 3.5	. D		0.03 0.00	D D		0.11	D	
				18N/01V-17	7802	н															
		/29/58 1530	5050 5050								•		0.	D				=	**		
		/27/59 L500	5050 5000								•		0.23	. 0							
		/27/59 L501	5050 5000								•		 2.6	T		**					
		/ /61	5050 5050					9.00	D				0.05			0.02	D D		0.00	D	

MINOR ELEMENT ANALYSES OF GROUND WATER

•	DATE TIME	SAMP Lar + +	NFPT4 + +	DISCH EC	TEMP PH	•	ARSENIC	•	CONSTITUENTS MARIUM CADMIUM + + + +	IN MILLIGRAMS CHROM (ALL) CHROM (HEK) + + + +	PER LITE COPPER IRON + + +	R •	LEAD MANGANESE + + + •	MERCURY SELENIUN + + +	SILVER	•	REM • •
			174/	014-09 RD	1 H												
	07/18/5	8 505	^		•									**	-		
	1410										0.01	Đ	"				
			174/	014-14C0	1 4												
	10/29/5	8 505	0														
	1500	505									0.	D					
	08/14/5	9 505	0							**							
		500	0								0.01	T					
	DR/14/5																
	0955	500	0 .								0.00	D					
	09/15/6										,	_					
	1500	505	0						***		0.09	T		****	***		
	/ /6						v	_			0.00	0	0.01 0			_	
12 7		505	0				0.00	D			0.03	T	0.00 D	*-	0.22	D	
			17N/	014-1463	2 H												
	09/10/7				14.	GC .				••		_					
		500	0	15	5						0.61	D			-		
	09/08/7				64.			_	+-		0.12	. <u>T</u>	0.00 T			_	
	0930	505	0	25	5 6.	7	0.00	T			0.04	Ť	0.00 T		0.17	T	
			174/	01 W-1 5 E0	1 H												
	06/25/5											_			-		
	1450	5 0 5	0						**		0.	D	+-				
	09/30/5											_					
	1500	500	0						ele de		0.03	Ţ					
	08/30/6							_			0.01	0	0.01 D			_	
	1600	505	0				0.00	D			0.04	Ţ	0.00 D		0.08	(i	

MINOR ELEMENT ANALYSES OF GROUND WATER

	DATE TIME		DISCH DEPTH EC	TEMP PH * * * *	ARSENIC		ONSTITUENTS RARIUM Cadmium	IN MILLIGRAMS CHROM (ALL) CHROM (MEX) + + + + +	PEP LIT		LEAD MANGANESE * * * *	HERCURY SELENIUM * * * *	SILVEP ZINC	REM + +
			F F-03 F-03.A F-03.A1 16N/02V-13E01	SMIT LOWE SMIT	H COAST H RIVER R SMITH H RIVER	HU RIVER					CONTINUED			
	08/30/77	5000 5000		14.0C						D			-	
		-1.5-	17N/01V-02F01					•		-				
				"										
	09/15/58 1510	5050							0.01	D		-	•••	
	08/27/59													
	1330	5000							0.00	D.				
	OR/27/59 1331	5050 5000			-				0.68	T				
	09/ /60	5050	randraji da kata da ka Na kata da kat											
		5050		10 1			-2		0.16	T				
	08/31/61 1655	5050 5050			0.00	D			0.00 0.02	D T	0.00 D		0.12	D
•	07/11/68 0930			55.0F 6.5	0.00	D			0.00	D T	0.00 D		0.00	D
		-		12.5C										·
	08/10/77	5000							0.01	D	-		 ,	
			17N/014-03E01	н					1 - 15 - 11 15 - 12 15 - 12 15 15 15 15 15 15 15 15 15 15 15 15 15			A Charles		
	08/10/77			13.OC						_	-			
		5000						**	0.02	ָט				
		ver ext	17H/01W-04J01									, .	. =	
	08/10/77	5000 5000		13.0C					0.06	Đ	-	-		
	09/24/80			16.0C										
	1230			7.3	-			 ,	0.010	D	0.008 D			
			17H/01V-09A01	H	•						* *.	· :		
	09/03/59								0.00	n	-		-	
		5000											-	
	09/03/59 1301	5000					, ,		0.11	T		-		
	09/14/60				•					_	••		, ==	
	1530	5050							1.0	T				•
	08/30/61 1620	5050 5050			0.00	D			0.00	D T	0.00 D		0.06	0

Appendix F Water Quality Guidelines for Agriculture

This Page Blank

University of California Cooperative Extension January 15, 1975

WATER QUALITY

Guidelines for Interpretation of Water Quality for Agriculture (UC-Committee of Consultants)

Guidelines were originally distributed to Cooperative Extension staff in December 1973. Suggestions for needed changes, additions, and corrections have been made as received. The present "guidelines" are revised to January 15, 1975 and include -

- 1. Guidelines for Interpretation of Quality of Water for Irrigation.
- 2. Assumptions and Comments on "Guidelines".
- 3. Crop Tolerance and Leaching Requirement Tables Field Crops.
- 4. " " " -- Vegetable Crops.
- 5. " " Fruit Crops
- 6. " " Forage Crops
- 7. Example Use of Crop Tolerance Tables.
- 8. Boron in Irrigation Waters.
- 9. Tolerance of Ornamental Shrubs and Ground Covers to Salinity in Irrigation Water.
- 10. Recommended Maximum Concentrations of Trace Elements in Irrigation Waters.
- 11. Guide to Use of Saline Waters for Livestock and Poultry.
- 12. Guidelines To Levels of Toxic Substances in Drinking Water For Livestock.
- 13. Tables for Calculating pHc Values of Waters.

Robert S. Ayers
Extension Soil and
Water Specialist
UC-Davis

Roy L. Branson Extension Soil and Water Specialist UC-Riverside

Guidelines for Interpretation of Quality of Water for Irrigation

Interpretations are based on possible effects of constituents on crops and/or soils. Guidelines are flexible and should be modified when warranted by local experience or special conditions of crop, soil, and method of irrigation.

TABLE A-1

PROBLEM AND RELATED CONSTITUENT	WATER QUALITY GUIDELINES					
Salinity ¹ /	No Problem	Increasing Problems	Severe Problems			
EC of irrigation water, in millimhos/cm	<0.75	0.75-3.0	>3.0			
Permeability						
EC, of irrigation water, in mmho/cm	>0.5	<0.5	<0.2			
ad J. SAR2/	<6.0	6.0-9.0	>9.0			
Specific Ion Toxicity3/						
from ROOT absorption						
Sodium (evaluate by adj.SAR) <3 3.0-9.0 >9.0						
Chloride (me/L)	<4	4.0-10	>10			
(mg/L or ppm)	<142	142-355				
Boron (mg/L or ppm)	<0.5	0.5-2.0	2.0-10.0			
from FOLIAR absorption (sprinklers)						
Sodium (me/L)	<3.0	>3.0				
(mg/L or ppm)	<69	>69				
Chloride (me/L)	<3.0	>3.0				
(mg/L or ppm)	<106	>106				
Miscellaneous 5/						
NH4-N NO4-N or for sensitive crops	<5	5-30	>30			
שרת (דים לו /	<1.5	1.5-8.5	>8,5			
(mg/L) (only with overhead sprinklers)	<90	90-520	>520			
or ppm)						
рH	normal re	inge = 6.5-8.4				

- 1/ Assumes water for crop plus needed water for leaching requirement (LR) will be applied. Crops vary in tolerance to salinity. Refer to tables for crop tolerance and LR. (mmho/cmX640 = approximate total dissolved solids (TDS) in mg/L or ppm; mmhoX1000 = micromhos)
- 2/ adj.SAR (Adjusted Sodium Adsorption Ratio) is calculated from a modified equation developed by U. S. Salinity Laboratory to include added effects of precipitation or dissolution of calcium in soils and related to CO₃ + HCO₃ concentrations.

To evaluate sodium (permeability) hazard:

$$\frac{\text{Na}}{\sqrt{\frac{\text{Ca} + \text{Mg}}{2}}} \quad [1 + (8.4 \text{ pHc})]$$

pHc is a calculated value based on total cations. Ca + Mg, and CO $_3$ +HCO $_3$. Calculating and reporting will be done by reporting laboratory. NOTE: Na, CA+Mg, CO $_3$ +HCO $_3$ should be in me/L.

Permeability problems, related to <u>low LC</u> or <u>high adj.SAR</u> of water, can be reduced if necessary by adding gypsum. Usual application rate per acrefoot of applied water is from 200 to about 1,000 lbs. (234 lbs of 100% gypsum added to 1 acre-foot of water will supply 1 me/L of calcium and raise the EC about 0.1 mmho.) In many cases a soil application may be needed.

- 3/ Most tree crops and woody ornamentals are sensitive to sodium and chloride (use values shown). Most annual crops are not sensitive (use salinity tolerance tables). For boron sensitivity, refer to boron tolerance tables.
- 4/ Leaf areas wet by sprinklers (rotating heads) may show a leaf burn due to sodium or chloride absorption under low humidity, high-evaporation conditions. (Evaporation increases ion concentration in water films on leaves between rotations of sprinkler heads.)
- 5/ Excess N may affect production or quality of certain crops, e.g. sugar beets, citrus, avocados, apricots, grapes, etc. (1 mg/L NO₃-N = 2.72 lbs, N/acre-foot of applied water.) HCO₃ with overhead sprinkler irrigation may cause a white carbonate deposit to form on fruit and leaves.

Symbol	<u>Name</u>	Symbol	Name	Equiv. Wt.
EC _w	Electrical Conductivity of water	Na	Sodium	23.00
mmho/cm	millimho per centimeter	Ca	Calcium	20.04
<	less than	Mg	Magnesium	12.16
>	more than	ထိုဒ	Carbonate	30.00
mg/L	milligrams per liter	HCO,	Bicarbonate	61.00
ppm	parts per million	ио ³ ⊰и	Nitrate-nitrogen	14.00
LR	Leaching Requirement	C1 ³	Chloride	35.45
me/L	milliequivalents per liter			
TDS	Total Dissolved Solids	17.1 ppm	= 1 grain per gal	lon

Assumptions and Comments on Guidelines for Interpretation of Quality of Water for Irrigation Developed by University of California Committee of Consultants

- 1. These "guidelines" are flexible and intended for use in estimating the potential hazards to crop production associated with long-term use of the particular water being evaluated. Guidelines should be modified when warranted by local experience and special conditions of crop, soil, method of irrigation, or level of soil-water-crop management. Changes of 10 to 20 percent above or below an indicated guideline value may have little significance if considered in proper perspective along with all other variables that enter into a yield of crop.
- 2. It is assumed that the water will be used under average conditions—soil texture, internal drainage, total water use, climate, and salt tolerance of crop. Large deviations from the average might make it unsafe to use water which under average conditions would be good, or might make it safe to use water, which under average conditions would be of doubtful quality.
- 3. The divisions into "No problem—Increasing Problem—Severe Problem" is more-or-less arbitrary, as well as carefully controlled greenhouse and small plot research conducted by various researchers over the past 40 years or more. Guidelines of one sort or another have been proposed by U. S. Geological Survey, University of California, U. S. Salinity Laboratory, and many others starting as early as 1911. As new research and observations have developed additional information for assessing water quality, guidelines have been modified.
- 4. These guidelines apply to surface irrigation methods such as furrow, flood, basin, sprinklers, or any other which applies water on an "as-needed" basis and which allows for an extended dry-down period between

- irrigations during which the crop uses up a considerable portion of the available stored water.
- 5. The guidelines incorporate some of the newer concepts in soil-plantwater relationships as recently developed at U. S. Salinity Laboratory. Uptake of water occurs mostly from the upper two-thirds of the rooting depth of crops (the "more-active" part of the root zone). Each irrigation normally will leach this upper soil area and maintain it at relatively low salinity. Salts applied in the irrigation water under reasonable irrigation management concentrate in the soil water in this active root zone to about three times the concentration of the applied irrigation water and the salinity of this root area is representative of the salinity levels to which the plant responds. The salinity of the lower root zone is of less importance as long as plants are reasonably well supplied with moisture in the upper, more active, root zone.

These guidelines represent the 1974 consensus of the UC Committee of Consultants. It is recognized they are not perfect and it is expected they will be modified from time to time as further knowledge and experience dictate.

TABLE F-2

RECOMMENDED MAXIMUM CONCENTRATIONS OF TRACE ELEMENTS IN IRRIGATION WATERS 1/

Element	For Waters Used Continuously on All Soil mg/1	For Use Up to 20 Years on Fine Textured Soils of pH 6.0 to 8.5 mg/1
	5.0	20.0
Aluminum		2.0
Arsenic	0.10	
Beryllium	0.10	0.50
Boron	0.75	2.0
Cadmium	0.010	0.050
Chromium	.10	1.0
Cobalt	.050	5.0
Copper	0.20	5.0
Fluoride	1.0	15.0
Iron	5.0	20.0
Lead	5.0	10.0
Lithium	2.52/	2.5 ^{2/}
Manganese	0.20	10.0
Molybdenum	0.010	$0.050^{\frac{3}{2}}$
Nickel	0.20	2.0
Selenium	0.020	0.020
Vanadium	0.10	1.0
Zinc	2.0	10.0

^{1/} These levels will normally not adversely affect plants or soils.
No data available for mercury, silver, tin, titanium, tungsten.

Source: Above data based on Environmental STudies Board, Nat. Acad. of Sci., Nat. Acad. of Eng. "Water Quality Criteria 1972" (U. S. Gov't. Print. Off., Washington, D. C. 20402), p. 339.

^{2/} Recommended maximum concentration for irrigating citrus is 0.075 mg/1.

^{3/} For only acid fine-textured soils or acid soils with relatively high iron oxide contents.

TABLE F-3

GUIDE TO THE USE OF SALINE WATERS FOR LIVESTOCK AND POULTRY 1/

Total Soluble Salt Content of Waters (mg/1)

Less than 1,000 mg/1 (EC less than 1.5) 2/	Relatively low level of salinity. Excellent for all classes of livestock and poultry.
1,000-2,999 (EC = 1.5-5)	Very satisfactory for all classes of livestock and poultry. May cause temporary and mild diarrhea in livestock not accustomed to them or watery droppings in poultry.
3,000-4,999 (EC = 5-8)	Satisfactory for livestock, but may cause temporary diarrhea or be refused at first by animals not accustomed to them. Poor waters for poultry, often causing water feces, increased mortality and decreased growth, especially in turkeys.
5,000-6,999 (EC = 8-11)	Can be used with reasonable safety for dairy and beef cattle, for sheep, swine, and horses. Avoid use for pregnant or lactating animals. Not acceptable for poultry.
7,000-10,000 (EC = 11-16)	Unfit for poultry and probably for swine. Considerable risk in using for pregnant or lactating cows, horses, or sheep, or for the young of these species. In general, use should be avoided although older ruminants, horses, poultry, and swine may subsist on them under certain conditions.
Over 10,000 (EC over 16)	Risks with these highly saline waters are so great that they cannot be recommended for use under any conditions.

^{1/} Environmental Studies Board, Nat. Acad. of Sci, Nat. Acad. of Eng.
"Water Quality Criteria 1972" (U. S. Gov't. Print. Off., Washington,
D. C. 20402), p. 308.

^{2/} EC values shown are reported as mmho/cm and are only approximations based on rough conversion of given mg/1 to EC by mg/1 + 640 = EC.

TABLE F-4

GUIDELINES TO LEVELS OF TOXIC

SUBSTANCES IN DRINKING WATER FOR LIVESTOCK 1/

Constituent	Upper Limit
Aluminum (A1)	5 mg/1
Arsenic (As)	0.2 mg/1
Beryllium (Be)	No data
Boron (B)	5.0 mg/l
Cadmium (Cd)	.05 mg/l
Chromium (Cr)	1.0 mg/1
Cobalt (Co)	1.0 mg/1
Copper (Cu)	0.5 mg/l
Fluoride (F)	2.0 mg/1
Iron (Fe)	No data
Lead (Pb)	0.1 mg/1 $\frac{2}{}$
Manganese (Mn)	No data
Mercury (Hg)	.01 mg/1
Molybdenum (Mo)	0.5 mg/1
Nitrate + Nitrite (NO ₃ -N+NO ₂ -N)	100 mg/1
Nitrite (NO ₂ -N)	10 mg/l
Selenium (Se)	0.05 mg/l
Vanadium (Va)	0.10 mg/1
Zinc (Zn)	25 mg/l
Total Dissolved (TDS) Solids	$10,000 \text{ mg/l} \frac{3}{2}$

^{1/} Based primarily on Environmental Studies Board, Nat. Acad. of Sci., Nat. Acad. of Eng., "Water Quality Criteria 1972"
(U. S. Gov't. Print. Off., Washington, D. C. 20402), p. 309-317.

^{2/} Lead is accumulative and problems may begin at threshold value = 0.05 mg/1.

^{3/} See "Guide to Use of Saline Waters for Livestock and Poultry", included as separate "Guide".

CONVERSION FACTORS

Quantity	To Convert from Metric Unit	To Customary Unit	Multiply Metric Unit By	To Convert to Metric Unit Multiply Customery Unit By
Length	millimetres (mm)	inches (in)	0.03937	25.4
	centimetres (cm) for snow depth	inches (în)	0.3937	2.54
ni kit	metres (m)	feet (ft)	3.2808	0.3048
	kilometres (km)	miles (mi)	0.62139	1.6093
Area	square millimetres (mm²)	square inches (in²)	0.00155	645,16
	square metres (m²)	square feet (ft²)	10.764	0.092903
	hectares (ha)	acres (ac)	in 2,47.10	0.40469
	square kilometres (km²)	square miles (mi²)	0.3861	2.590
Volume	litres (L)	gallons (gal)	0.26417	3.7854
	megalitres	million gallons (10 ^e gal)	0.26417	3.7854
	cubic metres (m³)	cubic feet (ft³)	35.315	0.028317
	cubic metres (m³)	cubic yards (yd³)	1.308	0.76455
	cubic dekametres (dam³)	acre-feet (ac-ft)	0.8107	.1,2335
Flow	cubic metres per second (m³/s)	cubic feet per second (ft³/s)	35.315	0.028317
	litres per minute (L/min)	gallons per minute (gal/min)	0.26417	3.7854
	litres per day (L/day)	gallons per day (gal/day)	0.26417	3.7854
	megalitres per day (ML/day)	million gallons per day (mgd)	0.26417	3.7854
	cubic dekametres per day (dam³/day)	acre-feet per day (ac- ft/day)	0.8107	1,2335
Mass	kilograms (kg)	pounds (Ib)	2.2046	0.45359
	megagrams (Mg)	tons (short, 2,000 lb)	1.1023	0:907:18
Velocity	metres per second (m/s)	feet per second (ft/s)	3.2808	0.3048
Power	kilowatts (kW)	horsepower (hp)	1:3405	0.746
Pressure	kilopascals (kPa)	pounds per square inch (psi)	0.14505	6.8948
	kilopascals (kPa)	feet head of water	0.33456	2.989
Specific Capacity	litres per minute per metre drawdown	gallons per minute per foot drawdown	0.08052	12.419
Concentration	milligrams per litre (mg/L)	parts per million (ppm)	1.0	1.0
Electrical Con- ductivity	microsiemens per centimetre (uS/cm)	micromhos per centimetre	1.0	1.0
Temperature	degrees Celsius (°C)	degrees Fahrenheit (°F)	(1.8 × ° C)+	-32. (°F32)/1.8